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Abstract

Language designers seem to regard R as an ugly, inefficient language and hence find its
popularity mystifying. See, for example, (Cook, 2012; Morandat et al., 2012).

I present four examples from my own work, two large data analyses problems in fish-
eries, and two more abstract programming examples. Hopefully these will be of intrinsic
interest, but together they encapsulate why I think useRs find R so invaluable. My the-
sis is that good data analysis and modelling require the practitioner to engage interac-
tively with data, and that at some level programming becomes essential to this. This is
essentially the same message as that presented in Chambers (1998, 2008), and the same
idea implicitly underlies (Venables and Ripley, 2002). The popularity of R is primarily
due to the way it provides support for this activity, making near optimal trade-offs. This
view is mostly consistent with Cook (2012) but there are some important differences.
(The claim that R is necessarily ugly is also disputed!)

Although R may be well suited to meet many contemporary data analysis problems, it
will not remain so indefinitely. I do not attempt to answer the existential question posed
in the title, but rather suggest it as one we should be thinking about, now. I will present
some thoughts on a SWOT assessment for R, and suggest ways we might prepare for a
graceful transition to whatever becomes the next phase. Such a new phase, or phases,
will inevitably come as data analysis itself rapidly evolves in both scope and scale.
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1 Introduction

Not many will remember the particularly lurid Hollywood blockbuster of the early 50’s, set
in the Rome of Nero, from whose pithy title ours is taken. The question, “Where are you
going?” or “What next?” is a universal one, and in the case of R, not one easily addressed.

The “R phenomenon”, as some are disposed to call it, seems to have taken everyone by sur-
prise. It seems useful to think about just what makes it so attractive to the data analysis
foot-soldiers and why the language theoreticians seem to look so askance at it from their
theoretical vantage point, (Cook, 2012; Morandat et al., 2012). In my view, both sides have
a good deal of merit to their case, and in pondering the next step in the evolutionary process
to which R must inevitably submit, we need to take care that due attention is given to main-
taining as many of the current practical advantages of R, while at the same time listening
to the language specialists and heeding their insights as well.

John Chambers (2009) in an invited article on the future of R, listed 6 “facets” that he
considered important in explaining the rapid progress of R. For reference, these facets were
that R is:

1. an interface to computational procedures of many kinds;

2. interactive, hands-on in real time;

3. functional in its model of programming;

4. object-oriented, “everything is an object”;

5. modular, built from standardized pieces; and,

6. collaborative, a world-wide, open-source effort.

To this list I would add that specifically the R system is:

7. extensible, may be augmented by compiled code in other languages;

8. cross-platform; and

9. international.1

The first of these extra ones, facet 7, may simply be an amplification of facet 1, though
it seems useful to emphasize that if R is what the language aficionados tend to call “glue
code”, then the bits of paper and string it can glue together are not essentially fixed within
the system, unlike many others.

I think it’s worth clarifying what we mean by “interactive”, too, as in my view it remains a
key feature for R’s continuing popularity. By this we mean not only that the system allows
the user to try a wide range of exploratory steps and see the outcome in real time, with
relatively few keystrokes; but most importantly that the user can do so leaving a clear trail,
so that the steps can be retraced and the results reproduced for later reporting. Currently
this effectively has to be a code trail. Clearly reproducibility is also important if there are

1The vital importance of this relatively recent development became very clear to me when working with
colleagues from non-English speaking locales, mainly from Brazil and Japan. It is very much appreciated.
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future adjustments to the analysis or to the data, (and there nearly always are, both) or if
the exercise has generated some technology worthy of transfer to other projects.

1.1 Programming and data analysis

Brian Ripley, in a talk in the RMetrics meeting in Switzerland about this time last year
singled me out for special mention:

“Bill Venables used to stress in the 1990s that using R (and S) was programming, and
that programming was an under-valued skill by statisticians. (Even then others told
him he was showing his age —BSc 1965.)”

As he went on to say

“To use R effectively you need some understanding of ‘software engineering’ concepts, as
well as of statistical algorithms.”

I think he meant it as a kind of compliment, but with Brian it can be hard to tell at times. In
any case, Brian and I are not entirely alone in this. I have it on the authority of the fortune
package that our host is of a similar view:

“Can one be a good data analyst without being a half-good programmer? The short an-
swer to that is, ‘No’. The long answer to that is, ‘No!’.”

– Frank Harrell, 1999 S-PLUS User Conference, New Orleans (October 1999)

I was at that meeting, too, and I heard him.

My conviction for many years has been that good data analysis, within which I would include
Statistics, requires a combination of several mental skills and attitudes. One of these skills,
in modern times, has come to manifest itself as programming, or software engineering, at
least of an elementary kind. The clarity and organizational skills that programming forces
on the practitioner are precisely those needed to untangle the sometimes very subtle and
sophisticated messages that data often has to offer.

1.1.1 Two cultures?

To me, data analysis is programming, but of a kind. This is allied to the premise discussed
at length in Chambers (1998). But there are two kinds of programming, or perhaps it should
be viewed as two extremes of a spectrum of kinds. Data analysis usually has an exploratory
phase, where rapid and flexible interaction are important. At this stage the code that will
be written will largely be using existing tools or writing usually small and often ad hoc new
tools, while the computational details are still being sorted out.

At the other end of the spectrum, the data analyst has developed a new kind of tool and
needs to transfer the technology. At this stage the programming has to be carefully designed
and written in a way that ensures, again in John Chambers’ words, The Prime Directive:
that the computations can be understood and trusted.

The ongoing discussion of the relative merits of S3 and S4 classes seem to me to miss this
point. S3 classes are informal, possibly inelegant, sometimes insecure, but emphatically
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simple and easy to grasp, and they have the capacity to grow and develop in an organic
way. On the other hand S4 classes are formal, trustworthy, in principle more flexible, but
they usually result in code that is much more contorted and obscure, and they do certainly
require a lot of careful planning and design work to be done beforehand. Once a bad design
decision is made with S4 classes, it’s often back to square one.

In my view, S3 classes are often more convenient for the kind of programming involved at
the exploratory phases of a project, whereas S4 classes are entirely suitable for the other
end of the project, or the other end of the spectrum, in my sense above.

1.2 Aims for the talk

What I would like to do first in this talk is to illustrate some of these facets as they occur in
a series of real data analysis examples from my own work. My purpose is two-fold: I hope
the examples are of some interest in themselves, but more pertinently, I hope to show by
example why data analysts find R so convenient and productive for their work.

Finally I will make some admittedly opinionated comments on the strengths and weak-
nesses in R as it stands and on the opportunities and threats that may lie ahead.

2 Prawn tales

Australia’s Northern Prawn (= ‘shrimp’ in some cultures) Fishery, (NPF), is a large inshore
fishery which stretches essentially across the top third of the Australian coastline. See
Figure 1. Effort in the fishery is conventionally measured in boat-days, and the effective

Figure 1: Australia’s Northern Prawn Fishery in context

extent of the fishery is more clearly shown by Figure 2 on the next page. (The blue line that
snakes its way through the fishery on Figure 2 will be explained in due course.)

There are eight species of prawn caught in the fishery, but the most valuable are the two
species of Tiger Prawn: Grooved Tigers (Penaeus semisulcatus) and Brown Tigers (P. escu-
lentus).
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Figure 2: A spatial representation of NPF effort since 1970, in boat days (on a log scale). The deeper
the orange colour, the higher the recorded effort.

These are very similar in appearance, (see Figure 3), and although they are distinct bio-
logical species they are not separated in the logbook catch records. The total daily catch is
merely reported as a weight of Tiger Prawns, in kilograms. However to ensure that both
species remain viable, each has to be given a separate stock assessment. The traditional
way to do this has been (and unfortunately, remains), first to “split” the Tiger catch into its
two component species, by weight, and treat the components as if they were independently
recorded. This is known as the “species split” problem.

Figure 3: Two species of Tiger Prawn caught in the NPF

Information on which to base base species split process comes from a series of large-scale
trawl-based scientific surveys in the NPF, conducted for a variety of primary purposes, but
for which the catch has been classified to the species level and measured. These surveys
began in 1976 and, with a few conspicuous gaps, continue until the present time.

When I first joined CSIRO in 1999, species split for Tiger prawns was based on a very
informal and static process. The entire NPF is broken up into 6"×6" grid squares, which
is the finest spatial resolution for which logbook records report their daily position. It is
known that the two species favour a different sediment type: Brown Tigers generally favour
a sandy sediment and Grooved Tigers a more muddy one. For each grid square, then:

• if any survey information is available, the crude aggregate ratio for Browns to Tigers
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in the survey data was used to split the logbook catch;

• if no survey information is available, an ad hoc matching was done with another grid
for which some information was available, using either similarity of sediment compo-
sition (which was rarely available) or simple spatial proximity.

It is also known, however, that both species have an offshore annual migration pattern,
presumably a breeding cycle though this is not entirely clear. The species split method in
use, however, was temporally static and relied only on geographical position. Nevertheless,
it did seem to capture the major relative pattern of the relative distribution of the two
species, and for stock assessment purposes appeared to be adequate.

The first project I was given when I first joined CSIRO was to build a better process for
species split.

There were ultimately two species split projects, 2000 and 2004, (though the first was really
a sub-project of a much larger risk analysis project). Both have final reports available in
the grey literature, but the first project was also discussed at some length in Venables and
Dichmont (2004b).

2.1 Species split 2000

It seemed obvious to me that some kind of predictive model would be the most useful way
of integrating and focusing all of the (scant) available information to predict the proportion,
by weight, of a catch of Tiger Prawns.

The only available information that might be useful consisted mainly of

• The location of the shot, i.e. Longitude and Latitude,

• The Depth at which the trawl was made, and

• The time of year, as a temporal term to accommodate migration events.

The sediment information, at the time, was too sketchy and probably measured at too lo-
cal a spatial scale to be of use in a general model that covered the whole fishery. Spatial
surrogates would have to suffice.

These variables would be used to build a temporally stable model for the species split pro-
portions. For a non-stable alternative (which would be useful for investigative purposes, but
not for prediction), we would also use

• The elapsed time, in days, since 1970-01-01.

Initially, however, we considered only the stable model.

At the time I was still using S-PLUS, a software platform with which I had had a long and
happy association. S-PLUS, at the time, did have some contributed software, (e.g. MASS
and friends, the survival and rpart libraries and a number of others), but most of the mod-
elling software either came with the system itself or some of the more exotic items were
available in some rather expensive, though very high quality, add-on “modules”. An exam-
ple of this was the spatial module, as opposed to the more limited (but still high quality)
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spatial library that came as part of the MASS collection. There was, however, nothing like
the current CRAN repository with its explosion of free goodies for every conceivable, and
many inconceivable, purposes.2

For generalized additive models, which would clearly be a natural place to start, the only
software I had available was the Hastie and Tibshirani code, which at the time was rather
limited in what it could do with interaction-type models involving smooth terms. As spatial
location was clearly going to be a critical surrogate for things like sediment type, some
thought needed to be given as to how to include this information in such a model.

2.2 The thin blue line: flexible spatial location

Rather than use Latitude and Longitude directly in the model (Mark 1, in 2000, at least)
we decided to represent spatial location in terms of two other variables, which formed a kind
of imprecise, but effective curvilinear coordinatisation of the fishery.

The first step was to draw a smooth curve that hugged the coastline and wound its way as
close as possible to the most active regions of the fishery. As this is an inshore fishery, the
shots at which both logbook and survey records are made tend to be strongly identified with
a region of the coastline.

This is the “thin blue line” shown on Figure 2 on page 7.

One spatial coordinate is then obtained as follows:

• first, the point on the line closest to the grid is found, and

• the coordinate value was the distance along the curve to the closest point from an
origin in the West.

This was called Rdist in the first version of the model, but which I now prefer to call simply
Coast.

For a second spatial coordinate we chose the distance from the grid to the nearest point
along the coastline itself. This “distance from land” we called Rland, but I now prefer to call
it simply Sea, i.e. the “distance out to sea”.

The rationale for choosing these particular two spatial coordinates at the time was to work
with two spatial predictors we could be reasonably confident, from what we knew of the
biology and behaviour of the species, that interactions between them, or indeed with most
(but not all) the other predictors, are unlikely to be important. This facilitated a simplifica-
tion in the model which improved interpretability as well, as fewer interaction terms were
needed. At the time, smooth additive terms with interactions were not well supported by
stand GAM technology, though this was ignored by many proponents. I discussed this point
some time ago in Venables (1998).

2I am reminded of Haydn’s rather modest assessment of his own symphonies, which he made towards the
end of his life. He is reputed to have said, “Sunt bona, sunt quaedam mediocria, sunt mala plura.” That is,
“There are some good ones, some are mediocre, but most are terrible.”

9



In retrospect I think this idea, which is not entirely new, is possibly one of the most useful
methodological suggestions to come from this work.

2.3 A temporally stable model

The outline for the stable model was not clear. After some investigation with GAMs, we
eventually settled on a simpler GLM which took the following form. The response was
Y = S/T where

• S =Weight of P. semisulcatus (Grooved Tiger) and

• T =Total weight of Tiger prawns in the catch.

with all weights in grams.

If EY =µ then we used, in R terms, a quasibinomial GLM with

logitµ=β0 +S10(Rdist)+S5(Rland)+S6(Depth)+H4(PDay)+LH2(Rland,PDay)

where the Sk()-terms are natural splines with k degrees of freedom, Hk() is an harmonic
(Fourier polynomial) with k degrees of freedom and LH2(, ) is a linear × harmonic interaction
with 2 d.f.

It is worth making the note that some of these models were difficult to fit and convergence
was often very slow during testing. More recently a package has appeared on CRAN that
modifies the glm algorithm and can result in much faster convergence. The package is
called glm2, (Marschner, 2011a,b) and provides a function of the same name which is a
direct replacement for the standard glm function in the stats package.

At the time, the available data consisted of about 9000 trawl catches, drawn from a number
of component surveys ranging in time from 1976 to 1998. The model was, with the equip-
ment and technology available to me, somewhat difficult to fit, but the model appeared to
work well and was clearly a great improvement over the existing temporally static process.

The components (in the link scale) are shown Figure 4 on the following page.

To appreciate the two-way interaction between distance from land and day of the year (i.e.
the migration term) we opted for a prediction at a hypothetical location with fixed Rdist

and Depth. The contour map of the predictions, which are then a function of PDay and Rland

is shown in Figure 5 on page 12.

The general features of the model were in accordance with the general understanding of
most of the stakeholders. These included the fact that some regions like North Mornington
and Karumba in the South-East corner of the Gulf of Carpentaria were “pure” Brown Tiger
regions, but others, such as the Vanderlins, a relatively short way to the West, was “mixed”,
with the components varying throughout the year.

The model was also effective (enough) when tested by the usual internal methods, such
as using a training and test subsets of the data. Some details are given in Venables and
Dichmont (2004a).
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Figure 4: Four components from the 2000 temporally stable model
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Figure 5: Conditional predictions given a fixed distance along the coast and depth

2.4 A long-term trend?

To investigate if the model really were temporally stable, we included an extra term S5(Day),
i.e. a natural spline with 5 d.f. in the elapsed time, in days, since 1970-01-01.

The result, shown in Figure 6 on the following page, is remarkable for its ambiguity. There
does indeed appear to be a long period where any trend was a negligible perturbation but
towards the end there appears to be a large deviation from this, (with a large pointwise
standard error). However this also corresponds to the part of the time scale when there is
least survey information, i.e. it could be seen as an unsafe extrapolation.
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Figure 6: Long-term trend component, additional to the temporally stable model of 2000.

Further investigation led us to the view that there was indeed something odd going on, but
it was probably not as alarming as the component picture might suggest.

2.5 Species split, 2004

The suspicion that the species composition had slipped in favour of one species, but the
species split process (of neither version) was not faithfully reflecting the changed status was
the main reason ultimately to undertake a second project that looked into this question
much more carefully, generating more data as well.

In the early 2000s I became fully emancipated from S-PLUS, even to the point where my
licence lapsed. It was for me a sad parting of the ways, as I did have many friends in the
Insightful organization, but frankly, with all the new software becoming available in R, and
the overall better language model than S, the transition was inevitable.3

The new project was a 3-year programme with two main features, namely it would have

• a field-work component to augment the historical data set with a lot of in-season sam-
pling on commercial vessels, and

• a data analysis component that would extend the modelling to take advantage both
of new predictor data that had become available and of some of the contemporary
developments in the modelling technology itself.

3What particularly drew me, from a language point of view, were two features of R in particular: the
scoping rules and the use of environments and closures. In a sense, coming from Scheme, R seems to have a
stronger pedigree than S, in a computer language sense, which has to confer some advantages.
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Under the second point I had in particular the work of Simon Wood in mind, as made avail-
able in the mgcv package, whose development had suddenly blossomed, and indeed contin-
ues to do so (Wood, 2003, 2004, 2011), along with other things of course. Also, Geosciences
Australia had recently made available a sediment map of the area, which provided an esti-
mate of the percent mud in the sediment of our grid squares.

The final report of the project appeared as Venables et al. (2006), and gives full details.

The new model was a GAM rather than a GLM. A crucial development in technology that
had been implemented in mgcv was to allow smooth terms in the model that were functions
of more than one predictor, along with a variety of spline bases including cyclic ones that
accommodated periodic terms.

The Rdist predictor, that had worked so well in the early version was abandoned in favour
of what seems to us a less artificial approach. The Rland predictor (now called Sea) was
retained, however.

In the new model, the response was the same as in the previous one. It was a quasibinomial
GAM, with terms as follows:

• An isotropic thin-plate smooth spline term in Longitude and Latitude, intended to
capture spatial aspects not otherwise captured by functions of location,

• A bivariate smooth tensor spline in Day (of year) and (distance out to) Sea, with the
spline basis for Day cyclic, with period one year,

• A similar bivariate smooth tensor spline in Day and Depth,

• A bivariate smooth tensor spline in Sea and Depth to capture more subtle spatial
features,

• A smooth spline term in (percent) Mud in the sediment.

The non-stable variant of the model contained in addition:

• A smooth spline term in the ElapsedDays since 1970-01-01.

The fitted components are shown in Figures 7 on the next page and 8 on page 16.

The purely spatial component is shown in contour form, and really only captures the feature
that the South-East corner of the Gulf of Carpentaria is effectively pure Brown Tiger, other
areas in the Gulf are, to some extent mixed, and the region outside the Gulf is essentially
pure Grooved Tiger.

The other three components show the two periodic terms (at least along one margin) and
the Sea by Depth interaction.4

Figure 8 on page 16 shows the sediment component and, as expected, that on the whole,
Brown Tigers favour a sandy sediment (i.e. low mud) and Grooved Tigers a more muddy
one.

4Note that while in this region, distance out to sea and depth are not as highly correlated as in other parts
of the coastline.
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Figure 7: Four smooth bivariate components from the stable model, 2004.
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Figure 8: The sediment component of the stable model, 2004.
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2.6 The annual migration effect

To appreciate the annual migration effect, we can predict the change in proportion over the
year in four key places, shown in Figure 9.

Figure 9: Four key places in the NPF

Figure 10 on the next page shows how the P. semisulcatus proportion varies throughout the
year. The Karumba region is effectively pure Brown Tiger throughout the year, and the two
regions in the North of the Gulf, Groote and Weipa, are mostly pure Grooved Tiger, with a
slight dip in the middle of the year, corresponding to the time that the Grooved Tiger prawns
are offshore on their migration. In the Vanderlins region, however, which is currently one
of the most productive, there is a wide variation in proportion over the year.
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Figure 10: Variation in P. semisulcatus proportions over the year
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2.7 The long-term trend issue, 2004

Finally an estimated long-term trend component, fitted on top of the smooth model, is shown
in Figure 11. The additional data collected (as shown in the rug) has greatly stabilized the
picture, and reduced the dramatic size of the final kick.

Figure 11: A potential long-term trend perturbing the stable model, 2004

Further investigation on several fronts added more weight to the contention that there had
been a small shift in the relative composition, and this in turn led to corrective management
action to protect the Brown Tiger species.

2.8 Where does programming come in?

Using R in what I would consider an innovative, constructive and investigative way like this,
in my view, constitutes a kind of programming in itself, in that it requires careful planning
and attention to detail. It also involves that crucial aspects of R, namely using objects to
marshal, record and otherwise manipulate your information relevant to the exercise.

There were, however, a few smaller challenges for the project where programming of a more
conventional kind did come to the fore.

2.8.1 Drawing the thin blue line

I tend to favour using complex number objects for two-dimensional problems in R. On look-
ing at how others tackle these rather simple issues, it seems to me this is a most neglected
feature.
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For example, finding all possible Euclidean distances between points in the plane is a simple,
two (at most) line function:

> dist2d <- function(x, y=NULL) {

z <- with(xy.coords(x, y), complex(real = x, imaginary = y))

as.dist(outer(z, z, function(x, y) Mod(x-y)))

}

The first approach to drawing the thin blue line was very informal and proceeded as follows:

• Using locator() select about 20 points, in order from West to East, to guide the
eventual curve through the main parts of the fishery.

• Join the points sequentially by straight line segments and find the cumulative dis-
tance, s, of each point, along the line segments, from West to East (starting from 0 at
the most Westerly point).

• Fit interpolation splines independently to the Longitude and Latitude of the points as
functions of the chord length, s and evaluate at a fine grid of points, say n = 2000. This
provides the curve itself.

• The cumulative distances along the newly generated smooth curve provide the Rdist

(or Coast) value for grids having that point on the curve as their closest.

The idea is much easier to express in code. Assuming a graphic such as in Figure 2 on page 7,
the curved coordinate information can be returned in a data frame as shown in Figure 12.

> curvCoord <- with(locator(type = "p"), {

z0 <- complex(real = x, imaginary = y)

d0 <- c(0, cumsum(Mod(diff(z0))))

z <- complex(real = spline(d0, Re(z0), n=2000)$y,

imaginary = spline(d0, Im(z0), n=2000)$y)

data.frame(Longitude = Re(z), Latitude = Im(z),

Coast = c(0, cumsum(Mod(diff(z)))))

})

> lines(Latitude ~ Longitude, curvCoord, col="blue")

Figure 12: Constructing the thin blue line “by hand”

The result is often close to what Hastie and Stuetzle (1989) call a “principal curve” for the
grid locations used by the fishery. This work was first implemented in S, but there have
been at least two R package ports of it. Those I know of are princurve (Hastie, 2011), and
the older port, pcurve, (Walsh, 2011).

2.8.2 Finding the nearest points

Finding the nearest point on the line, and hence the Coast distance, can be done using a
simple brute force, looping method based on the function dist2d, defined on on the current
page. Since there are only about 7000 grids in the region, this is a feasible, if rather slow
and cumbersome process. It is programming, though.
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When I first did this I was using S-PLUS and the spatial module. This has a function for
finding k−nearest neighbours based on quad trees. It works very fast.

When I finally migrated completely to R, I missed the spatial module, but the spatial pack-
age in the MASS collection has a function knn1 which does a similar job.

More recently, however, the SearchTrees package, (Becker, 2012), has appeared on CRAN
which implements quad tree search technology, which again is very fast. This is another
instance of the collaborative facet of R.

Finding the distance to the coastline, the Sea predictor, is essentially the same problem,
though the distance in this case is from the grid to the target point on the coastline. In the
previous case it was the distance along the curve to the target point on the curve.

3 The morphometric problem: robust non-linear regres-
sion

In the survey data, the weight of each animal was often not recorded. Rather the carapace
length, L was recorded and the weight, W , of the animal had to be inferred using a stan-
dard morphometric relationship, which invariably has the form W =αLβ. More precisely, a
statistical model for W in terms of L has the form

W ∼N
(
µ=αLβ,σ2µ2

)
at least approximately. For individual measurements taking logs and using a log-linear
model:

logW =α?+β logL+ε, α? = logα, ε∼N(0,σ2)

is often adequate. The variance on the log scale is usually quite small, making a simple
back transformation adequate for estimating the true weight.

These relationships are particular to the species and sex.

Where necessary, the estimates we used for the morphometric constants, α and β, were
taken from the literature. As part of the second project, we decided to re-calibrate them
using a part of the new data that was individually measured both for W and L.

In the log scale the regression lines were in the main quite tight, and the estimates close
to those in the published literature. There were, however, a substantial number of outliers
most likely due to the difficulties of accurate measurement of some individuals, both in
weight and in carapace length. Traditionally in most biological work such embarrassing
data are silently discarded, but in this case the tight regression lines become somewhat
self-fulfilling and new dangers appear. We preferred to use robust regression techniques,
which worked well and settled the outlier issue in a reasonably objective way.

The MASS package has two main functions for robust regressions, rlm and lqs, both of
which work well here, but nowadays I would normally use the robust library, (Wang et al.,
2012), ported from S-PLUS.
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A simple robust technique is to use the t−distribution with low degrees of freedom as a
modelling distribution in place of the normal. This is simple to do using the optimization
tools available in R, and can be packaged in such a way as to make using it almost as con-
venient as using the standard linear modelling tools. We did this as an exercise, though the
package has not been published. Having the robust package available makes it somewhat
redundant, except for expository purposes.

3.1 Estimation with aggregated data: the real challenge

It turns out there is quite a lot of data available for this calibration exercise in the survey
data, but it comes in a very awkward form. A common practice was, for each trawl shot,
to measure the carapace of individual animals, but to weight only the whole species group,
sometimes separating the sexes, but often not. So if Wi is the total weight of a group of g i
animals with carapace lengths l i j, and sexes si j, j = 1, . . . , g i, i = 1, . . . ,n, an approximate
model would be

Wi ∼N

(
g i∑

j=1
µi j,

g i∑
j=1

σ2
si j
µ2

i j

)
, where µi j = exp

(
αsi j +βsi j log l i j

)
where for any species there are 6 unknown parameters, namely αM , αF , βM , βF , σ2

M and
σ2

F . Fortunately, good initial estimates are available.

Again, robustification is needed, although now picking the outliers is a non-trivial task.
And again, the t−distribution dodge comes to the rescue. The likelihood, L , to maximize is
specified as

−2logL =
n∑

i=1

(ν+2)log

1+
(
wi −∑g i

j=1µi j

)2

ν
∑g i

j=1σ
2
si jµ

2
i j

+ log

(
g i∑

j=1
σ2

si j
µ2

i j

)
where the degrees of freedom, ν, is normally set at 3 or 5.

To minimize this quantity requires writing a function in R to evaluate it that is as efficient
as possible, as many evaluations are likely to be necessary. This in turn requires the data
to be well organized and vectorized techniques to be used as effectively as possible.

The point to make is that these tools are available in R, both the language and the system,
and writing the necessary software to handle it does not require heroic efforts to push the
system past its design limits. If this were to become a regular necessity, then some tools
written in a compiled language would clearly be an advantage, but for trial purposes and
even some limited production purposes, native R and a bit of programming cunning is all
that is needed.

The t−robust estimates of the parameters from the augmented data were very much in line
with the estimates got from the single animal measurements alone.
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4 Complex makes things simple: Dan’s problem

Dan is a young colleague sitting at the desk behind me. He works in time series (amongst
other things) and he came to me with a computational problem that I will specify here only
in abstract terms. It is, however, a real problem and together it looks like we have nailed it.

The two-dimensional version of the problem is the most important. In this case line seg-
ments in the plane are given by their intercepts on the x− and y−axes. It is guaranteed
that these are never zero, so the lines are guaranteed never to pass through the origin. It is
also guaranteed that eventually the line segments will surround the origin.

The problem is to devise a fast method for finding the smallest polygon which the lines
define that encloses the origin. Alternatively, each line defines a half-plane containing the
origin. The problem is to find the intersection of all of these.

Figure 13: Dan’s problem. Each line defines two half-planes, one of which will contain the origin.
The problem is to find the intersection of all these half-planes, which will be a convex
polygon enclosing the origin.

A function will have a stationary point within this polygon and the next step, (not considered
here), is to find it. In practical cases the number of lines is likely to be large, typically in
the thousands, and the job has to be done many times, as if in a simulation. So there is a
premium on finding a slick algorithm for every step of the way.

An algorithm

The first version of the algorithm is simple enough. The steps involved are

• Find the normals to the lines, and hence the line closest to the origin.

• Rotate the plane so that this normal points South, i.e. the line is parallel to the x−axis.

• Find the points of intersection of this line with all the others.
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Figure 14: The minimum convex polygon enclosing the origin

• The two intersection points closest to the y−axis define the first (positive side) and
last (negative side) corners of the minimum enclosing polygon.

• Rotate the plane again so that the next side is parallel to the x−axis. The next corner
is then the intersection point with this line whose x−component is the smallest one
larger than that of the current corner.

• Continue until the (known) last corner is reached.

Figure 15: The normals to the lines

Representing the lines by a single complex number defined by their intercepts is convenient,
and finding where two such lines meet is also simple, and more importantly, vectorizable. To
find distances from the origin to lines, it is also necessary to be able to find the normal, i.e.
the foot of the perpendicular to the line passing through the origin. This is also represented
as a single complex number, and is an alternative way of representing the line itself.

To get the flavour of the computation, two key functions are shown in Figure 16 on the
following page.
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> normals

function(x, y = NULL) { ## normals from intercepts

z <- with(xy.coords(x, y),

complex(real = x, imaginary = y)) ## Lazy evaluation

x <- Re(z)

y <- Im(z)

m <- Mod(z)

(x/m)*(y/m)*complex(, y, x) ## numerical caution!

}

> intersections

function(n1, n2) { ## two lines in 'normal' form

n12 <- n1*Conj(n2)

lambda <- ifelse(Im(n12) == 0, as.complex(Inf),

(Re(n12) - Mod(n2)^2)/Im(n12))

n1*(1 + 1i*lambda)

}

Figure 16: Two key functions: finding the normals from the intercepts, and finding the points of
intersection between two lines given in “normal” form

The code to find the “convex centre” is straightforward when using complex numbers. Ro-
tating the plane is simply a matter of multiplying everything by a suitable complex number.
Some code is shown in Figure

The breakthrough came when we realized we could identify the lines which define the con-
vex centre directly from the normal form. The idea is as follows:

• The transformation z 7→ 1/z in the complex plane maps:

– lines not passing through the origin into circles passing through the origin,

– the (external) normal to the line to the diameter of the circle starting at the
origin.

• The points defining the convex hull of the reciprocals of the normals give the lines, in
order, defining the polygon enclosing the origin.

The key step in the code is

h <- chull(1/normals(z))

which gets the indices of the lines enclosing the origin, in clockwise order, using a fast
algorithm. That it happens to be part of the grDevices package does not preclude it from
being useful elsewhere!

Some relative timings are shown in Figure 20 on page 27. For real cases the gain in speed
by using the convex hull method is typically by a factor of about 12.
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> convexCentre

function (x, y = NULL) {

z <- with(xy.coords(x, y),

complex(real = x, imaginary = y))

nz <- normals(z)

az <- sort(Arg(nz))

if (max(diff(c(az, az[1] + 2 * pi))) > pi) {

warning("the lines do not enclose the origin.")

return(as.complex(Inf))

}

z <- nz

j0 <- which.min(Mod(nz))

nz <- nz * complex(argument = South - Arg(nz[j0]))

r0 <- Re(intersections(nz[j0], nz))

i0 <- which(r0 == max(r0[r0 < 0]))

I <- i0

J <- j0

while (!any(duplicated(J))) {

I <- c(I, j0)

i0 <- j0

j0 <- which(r0 == min(r0[r0 > 0]))

J <- c(J, j0)

nz <- nz * complex(argument = South - Arg(nz[j0]))

r0 <- Re(intersections(nz[j0], nz))

r0 <- r0 - r0[i0]

}

structure(intersections(z[I], z[J]), indices = cbind(I, J),

class = "convexCentre")

}

<environment: 0x06097b9c>

Figure 17: The key function: finding the convex centre as lines and corners

> find("chull")

[1] "package:grDevices"

> convexCentre2

function(x, y=NULL) { ## using convex hull assumption

z <- with(xy.coords(x, y),

complex(real = x, imaginary = y))

h <- chull(1/normals(z))

z0 <- convexCentre(z[h])

attr(z0, "indices")[] <- h[attr(z0, "indices")]

z0

}

Figure 18: Using the convex hull of the inverted plane to identify the key lines directly
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Figure 19: The inverse view of Figure 15: lines enclosing the origin become circles passing through
the origin

> w <- complex(real = rt(500000, 5), imaginary = rt(500000, 5))

> rbind(orig = system.time(cc1 <- convexCentre(w))[1:3],

hull = system.time(cc2 <- convexCentre2(w))[1:3])

user.self sys.self elapsed

orig 4.74 0.65 5.11

hull 0.72 0.14 0.74

> identical(cc1,cc2)

[1] TRUE

> cc1

Corner Line1 Line2

1 -1.803654e-07+1.338215e-05i 403 211851

2 -1.803665e-07-3.773626e-06i 211851 282935

3 4.040244e-06-3.773639e-06i 282935 229698

4 4.040266e-06+1.338213e-05i 229698 403

5 -1.803654e-07+1.338215e-05i 403 211851

Figure 20: Some timings for a large case, without and with the convex hull trick
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Figure 21 shows the result of a real example with 4390 lines. As the problem is scale equiv-
ariant, the data have been scaled to make the diagram more convenient to display.

Figure 21: Dan’s problem: A real example with 4390 lines

4.1 Higher dimensional cases

For the higher dimensional case the problem is much more complicated, but the same idea
seems to hold. Lines are replaced by (hyper-)planes, but the normal to the plane is still the
key.5

Corresponding to the inversion, a normal to a plane of length n is replaced by a vector
whose length is 1/n, still pointing in the same direction.6 Finding the convex hull of the
n−dimensional normals then finds the planes which enclose the origin, as required.

The geometry package, (Barber et al., 2012), already provides a function, convhulln, an
interface to the qhull library, which may solve that problem, but work is still underway on
this extension.

5Note that dropping a perpendicular from a point onto a hyper-plane is what is usually called fitting a
linear model, in statistical terms.

6This actually corresponds to a transformation to the conjugate of the reciprocal, z 7→ 1/z̄, in two dimen-
sions, which achieves the same result as the original.
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5 The winds of change

“Language is a primary element of culture, and stasis in the arts is tantamount to death.”
– Charles Marsh

5.1 Bending the problem to suit the computational device

When a statistical system or language seems to have run its course and hit a design wall, I
have noticed that many devotees desperately clutch to their beloved system and can spend
an inordinate amount of time, ingenuity and cunning trying to make the old system do what
it was never designed to do. I’ve seen this with minitab, with early versions of GenStat and
with Glim. I have done it myself.

The case of Glim is to me particularly interesting to me. It was a package (in the true, pejo-
rative sense) designed to implement really one single, good idea: generalized linear models.
Many problems that did not fit the mold were constrained to do so, simply because the temp-
tation to use Glim was too great. In the early to mid 80’s there was a series of ingenious
papers in Applied Statistics showing how Glim could be used for all sorts of unexpected
things such as fitting the von Mises distribution, (Lawson, 1988), fitting Cox regression
models, with and without the EM algorithm, (Clayton and Cuzick, 1985; Whitehead, 1980),
and fitting parametric survival models (Aitkin and Clayton, 1980).

The function glm.nb in the MASS package to fit Negative Binomial models originated as
a tortuous Glim macro that I wrote in the early 80’s. It was tricky to do and slow to work,
even though Negative Binomials just miss out on being true generalized linear models by
only a whisker. By comparison the R version was simplicity itself, even though the same
algorithm, essentially, is still used.

I don’t think this kind of distortion of the computational tool is an entirely bad thing. On
the contrary, it can be used to show deeper theoretical connexions between techniques which
on the surface appear to have little in common, and in the cases cited above, they do. But
in general I think it is better to spend your ingenuity in solving real problems in statistics
and data analysis even if it means some investment of time and energy in learning how to
use new tools to do the computations.7 On the other hand, one criterion of success for a
software system8 is met when people start to use it in ways that were not expected when it
was designed.

5.2 Why is R so successful?

The examples I gave in the preceding section were meant to show how I have been able to
use R for many years now as essentially my only computational tool. I do often write small
pieces of C, or if I must, Fortran, and augment R that way, but largely I can do very well

7The issue is subtle, though. In my view the computations ought not to be considered separate from the
theoretical aspects. There needs to be a continuous melding gong on.

8Which Ross Ihaka thinks may be due to Brian Kernighan, but I cannot find the quote.
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with just using R, on quite large problems. That was never possible in the old Glim days, at
least not without artificially distorting every problem to fit the limited Glim mold.

I suggest the fundamental reason why R has become so widespread and popular is that
it achieves a very delicate balance between the simplicity and flexibility of an interactive
system for rapid exploration of data and the generality of a true programming language.

It remains to be seen if this balance can continue to be met by a single system, or if two or
more linked tools will become necessary to meet the challenges.

5.3 Some worrying trends?

The other, and in my view lesser reason for the success of R is another of John Chambers’
facets: collaboration. The most tangible manifestation of this is the CRAN repository and
its allies. John himself says that some of these initiatives are “messy”, and gentleman that
he is, leaves it at that. There are many gems in the CRAN collection, but there are many
egregious counter-examples, some of which I need to mention, but without names, of course!

5.3.1 An egregious example

One package, which appears to be aimed at either school students or teachers, offers a suite
of functions for some rather simple numerical processes. If it is ever used, (and the package
now appears to be orphaned, but it is still on CRAN), I hope the luckless students are never
invited to look at the code. Here is an example:

function (x) {

start <- 1

end <- length(x) + 1

while (start < end) {

y <- x[start]

if (y > 0) {

if (start == 1) {

result = TRUE

}

else {

result <- c(result, TRUE)

}

}

else {

if (start == 1) {

result = FALSE

}

else {

result <- c(result, FALSE)

}

}

start <- start + 1

}

return(result)

}
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This masterpiece of obfuscation is equivalent to

function(x) x > 0

except that the latter is more general: it works on zero-length vectors. If students are
involved, it is no defence to say that “it works”. It does more than work; it actively hinders
understanding.

It gets worse. The package provides a function for finding lists of prime numbers. The algo-
rithm is turgid, slow and wrong. It is so slow, a list of all the “prime” numbers it generates
less that 10 million is provided as a data set. The very first entry on this list is wrong: it
starts with 1. The next erroneous one is not that far down: 133, (= 7×19).

I know several people have tried to have the package either fixed or withdrawn, but without
success. Caveat emptor indeed.

5.3.2 Three kinds of package

In my mind I recognize three kinds of package, or package suite, which can become worrying.
These are:

A home for the refugee: packages that seek to emulate another system. These are very
understandable developments and often have excellent code, but sooner or later, to
exercise the full power of R, the user has to learn how to use R, not some version of R
with the familiarity of home.

Two anonymous examples to illustrate what I would consider to have some unfortu-
nate effects are as follows:

• There is a package (not named here, but there are, in fact, several) that, to be
like matlab, masks poly, reshape and toeplitz from the stats package, find
[sic!] and fix [sic!] from the utils package and mode, real and strtrim from the
base package. The code itself, though, is very good.

• Another package, (which again I choose not to name), offers the user functions
to do comprehensive analyses for a series of fairly standard ANOVA problems.
During their operation, a plethora of results is printed onto the output stream,
whether you want it or not.

However that’s all the get. The value returned from these functions is always
NULL. Any form of diagnostic post-processing by the user is precluded, presum-
ably as unnecessary given the volume of output. Moreover both the global envi-
ronment and the search path are left littered with strange objects.

It came as a surprise to me that someone with such an unorthodox view of how to
use R managed to build a package in the first place, let alone get it on to CRAN,
apparently without a hitch.

Aficionados of statistical packages, though, would feel right at home.
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Empires: suites of interconnected packages that offer someone’s view of the world; how
thing ought to be done.9

This is a curious one. In many cases the emperor has a point, but in too many others
not, and the follower can lose touch with standard, portable R for little gain.

A more subtle danger with empires is the the tendency they can have to provide suites
of “tools” for every conceivable need. This often starts off as being simply helpful but
ultimately becomes emasculating, reducing the ability of users to program at a low
enough level to harness the real power of R.

Where empires conflict they can fragment the R community, partitioning it into fac-
tions, and thus working against collaboration.

GUIs: which need no further explanation.9

While I fully admit the usefulness of GUIs for some classes of user, they do worry me
in general. GUIs are clearly intended to make the learning curve much easier to climb.
The problem is that they can lead to a dead end only part of the way up the hill.

More insidiously, the use of GUIs in education, particularly, can be based on the pre-
sumption that some users are incapable of harnessing the full power or R, or that they
are unlikely ever to want to do so. Such a prejudicial assessment can only become
self-fulfilling. Students have a wonderful power to surprise you, sometimes, and they
are the future.

6 Quo vadis?

The tools we use must evolve, simply because the nature of data analysis itself is changing
along with the challenges it has to face. Data is constantly increasing in size and complexity
and hence is changing in the Marxian sense:

“Merely quantitative differences, beyond a certain point, pass into qualitative changes.”
– Karl Marx, Das Kapital, Kritik der politischen Ökonomie, Vol. 1.

Our data analysis tools will need to evolve in parallel.

The pace of change in R is slowing.10 This suggests it is reaching a kind of asymptote in
its development and a sigh we should be looking to the future for something to replace it,
or more likely, to complement it. It is not especially insightful11 to point out that what we
most urgently need are programming support tools to take advantage of the explosion in
computational devices becoming available, such as Graphical Processing Units and other
parallel processing mechanisms. There is no doubt we will need them. With the explosion of
data itself, the data analysis community will face will need every bit of the new technology
it can access. However there will always be a need for the kind of investigative work —

9I think it might be wise to refrain from giving concrete examples!
10As evidence I note that there is a plan for new releases to appear annually rather than biannually as at

present.
11No pun intended
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interactive data analysis — and that will require something ‘not unlike’ R well into the
future. People will need to invest in more than one too.

Currently R has a momentum that seems to ensure it will continue essentially in its present
form for some time to come. This has some good, and some not so good implications. Most
computer languages, once they reach a certain point in their development, and acceptance
by a user public, seem to carry on for much longer than anyone would have expected. Legacy
code, and the accumulated investment in training and user experience seem to ensure
changes do not happen as quickly as they should. Take Fortran 77, for example.

I don’t think R is anywhere near that point yet, though there are some signs it is coming.
Occasionally I find myself resorting to slick and obscure dodges just to squeeze and extra
ounce of efficiency out of the system, and things do start to get somewhat artificial. This
could be partly a hardware problem as much as software, though: I do have only two laptops
these days, and they are 4 and 5 years old respectively.

Perhaps in future R can be maintained in a style somewhat like the TEX model. Devel-
opment of the idea reaches a natural limit, but the tool remains useful well into the fu-
ture. Other systems are built on top of it, such as LATEX, or to extend it, like BIBTEX and
MAKEINDEX or even replace the basic tool with possibly better code that takes advantage
of modern developments, such as PDFTEX, or indeed as R did with S itself.
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