
Adaptive Middleware and High
Performance Software for Multi-core
Deployments Across Cloud Configurations

R User Conference 2010

Douglas C. Schmidt

Chief Technology Officer

Zircon Computing

July 22, 2010
1

Motivation:

Accelerate Garrett Asset Management Models
Objective

• Run 100,000 Garrett
Asset Management
(GAM) R-based models 2 orders
of magnitude faster than
previous processing times

© Copyright Zircon Computing, LLC 2005-2010

2

Objective

• Run 100,000 Garrett
Asset Management
(GAM) R-based models 2 orders
of magnitude faster than
previous processing times

Approach

• Integrated R with Zircon
Computing’s adaptive high
performance middleware

Results

• Reduced processing time from
2,217 minutes (36 hours) to 22
minutes (2 orders of magnitude)
on commodity ~100 core cloud

• Solution was easy program,
deploy, maintain, and administer

Motivation:

Accelerate Garrett Asset Management Models

© Copyright Zircon Computing, LLC 2005-2010

3

• The Garrett Asset Management (GAM) Backtesting System
financial application guides future trading decisions by

analyzing historical data to determine how a trading method

would have performed in past stock markets

• Executes a large # of logically independent and
computationally intensive calculations to simulate
behavior of models on historical data

• For each combination of a model and a time period, the
GAM Backtesting System performs computationally
intensive calculation and collects results until
computations are done

• R was natural choice to meet
GAM’s statistical analysis needs
since its convenient and powerful
abstractions allow users to run
complex data analysis with relatively
few commands

for (x in MODELS)

for (I in i:length (StratPars)

allres <- rbind (allres,

GenericgetNAVs (…))

Overview of GAM Backtesting System

The faster the R-based GAM models run, the more valuable the results

4

© Copyright Zircon Computing, LLC 2005-2010

for (x in MODELS) {

for (I in i:length (StratPars)

allres <-

rbind (allres,

GenericgetNAVs (…))

GenericgetNAVs (…) {

// Many compute-intensive

// calculations written

// using R function calls

}

Cons

• Problem 1: Performance was poor (~36
hours per model) due to R interpreter
overhead

• Problem exacerbated for large # of
iterations in typical StratPars matrices

• Problem 2: R is single-threaded, which
makes it hard to exploit modern
multicore processors

Initial R-based GAM Backtesting System

Pros

• R-based application was
straightforward to develop and
evolve

• Several 1,000 lines of R code

• Key R capabilities (re)used
included matrices, RSQL, R
statistics package, fTrading
package, and TTR

StratPars is an matrix that
is iterated across each row

The GenericgetNAVs()

function performs backtesting

on each row of historical data

5
© Copyright Zircon Computing, LLC 2005-2010

for (x in MODELS) {

allres <-

call_get_navs (StratPars)

...

call_get_navs (StratPars, ...) {

// Use .Call (R capability) to

// call external C++ function

fun <- ”call_generic_get_navs”

val <- .Call (fun, StratPars,…)

}

// This function is written in C++.

// Any R code can call this

// function after loading library

// containing this function.

call_generic_get_navs (StratPars) {

for (int i = 0;

i < length (StratPars);

++i)

CPP_GenericgetNAVs (...)

}

• Use Rcpp to send StratPars to C++
func call_generic_get_navs()

• Use RInside to call R function
GenericgetNAVs() from C++ func
CPP_GenericgetNAVs()

Initial R-based GAM Backtesting System

Partially addressed problem 1 by
moving one R loop to C++ function

• Provide StratPars matrix as

input to C++ function

Partially addressed problem 1 by
moving one R loop to C++ function

• Provide StratPars matrix as

input to C++ function

• C++ function iterates through
StratPars matrix and for each row
calls CPP_GenericgetNAVs()

6
© Copyright Zircon Computing, LLC 2005-2010

Pros

• By using Rcpp and RInside, we

moved for loop execution from

interpreted structure of R to

compiled structure of C++, thus

executing the inner loop faster

Cons

• Problem 2 still remains: loop iterations are

sequential

• We therefore can’t exploit remote/multicore

processors to accelerate GAM Backtesting

System model processing

Initial R-based GAM Backtesting System

for (x in MODELS) {

allres <-

call_get_navs (StratPars)

...

call_get_navs (StratPars, ...) {

// Use .Call (R capability) to

// call external C++ function

fun <- ”call_generic_get_navs”

val <- .Call (fun, StratPars,…)

}

// This function is written in C++.

// Any R code can call this

// function after loading library

// containing this function.

call_generic_get_navs (StratPars) {

for (int i = 0;

i < length (StratPars);

++i)

CPP_GenericgetNAVs (...)

}

We needed a solution that kept benefits of R, but accelerated it transparently
7

© Copyright Zircon Computing, LLC 2005-2010

Zircon Software Overview
The Zircon software
product suite is
adaptive middleware

that maps mission-
critical applications

onto high-performance
computing platforms

and supports key
computing and
communication models:

• Application
executable
parallelism

• Function
parallelism

• Task parallelism

M
a

n
a

g
e

m
e

n
t T

o
o

ls

ADAPTIVE Communication Environment (ACE)

zNet C++ API

zNet C API

zNet Services

zExec
zExec

zExec
zExec

z
S

tu
d

io

zNet Service Delivery PlatformTCE zEngine

zFunction Tools

zPluginBuilder

zFunction C API

Supported Operating Systems (e.g., Linux, Windows, Solaris, etc.)

Z
irc

o
n

 M
id

d
le

w
a

re
 a

n
d

 O
p

e
ra

tin
g

 S
y
s
te

m

In
fra

s
tru

c
tu

re

z
A

d
m

in

Text MiningPortfolio Risk Analysis Online Trading

Application Domains

Document Processing

Cloud ComputingBlade ClustersMulti-core
Chips

Symmetric
Multiprocessors

8© Copyright Zircon Computing, LLC 2005-2010

Zircon Software Overview

At the heart of the
Zircon middleware is
a dynamic equalizer
that adaptively
balances load to
ensure scalable and
real-time response

M
a

n
a

g
e

m
e

n
t T

o
o

ls

ADAPTIVE Communication Environment (ACE)

zNet C++ API

zNet C API

zNet Services

zExec
zExec

zExec
zExec

z
S

tu
d

io

zNet Service Delivery PlatformTCE zEngine

zFunction Tools

zPluginBuilder

zFunction C API

Supported Operating Systems (e.g., Linux, Windows, Solaris, etc.)

Z
irc

o
n

 M
id

d
le

w
a

re
 a

n
d

 O
p

e
ra

tin
g

 S
y
s
te

m

In
fra

s
tru

c
tu

re

z
A

d
m

in

Text MiningPortfolio Risk Analysis Online Trading

Application Domains

Document Processing

Cloud ComputingBlade ClustersMulti-core
Chips

Symmetric
Multiprocessors

9© Copyright Zircon Computing, LLC 2005-2010

Zircon Software Overview

ACE is portable C++
host infrastructure
middleware that
implements high-
performance distributed
computing patterns
without incurring
virtualization overhead

M
a

n
a

g
e

m
e

n
t T

o
o

ls

ADAPTIVE Communication Environment (ACE)

zNet C++ API

zNet C API

zNet Services

zExec
zExec

zExec
zExec

z
S

tu
d

io

zNet Service Delivery PlatformTCE zEngine

zFunction Tools

zPluginBuilder

zFunction C API

Supported Operating Systems (e.g., Linux, Windows, Solaris, etc.)

Z
irc

o
n

 M
id

d
le

w
a

re
 a

n
d

 O
p

e
ra

tin
g

 S
y
s
te

m

In
fra

s
tru

c
tu

re

z
A

d
m

in

Text MiningPortfolio Risk Analysis Online Trading

Application Domains

Document Processing

Cloud ComputingBlade ClustersMulti-core
Chips

Symmetric
Multiprocessors

10© Copyright Zircon Computing, LLC 2005-2010

• Discovery

• Designate library that is
called repetitively

• Can be a new, legacy,
or 3rd party library

• Delivery

• “zEnable” the library
to deliver zPluginLibrary

• Deployment

• Deploy the zPluginLibrary to available hardware
and zEngine containers

• Call zEnabled proxy library functions in your
client application

• Let Zircon software handle the rest!

• e.g., load balancing, distribution, fault tolerance,
concurrency control, security, monitoring, etc.

zF

How Zircon Software Works

F

z

z

z

z

z

z

z

z

z

z

zEngine

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Computation Grid

11© Copyright Zircon Computing, LLC 2005-2010

for (x in MODELS) {

allres <-

call_get_navs (StratPars)

...

call_get_navs (StratPars, ...) {

// Use .Call (R capability) to

// call external C++ function

fun <- ”call_generic_get_navs”

val <- .Call (fun, StratPars,…)

}

// This function is written in C++.

// Any R code can call this

// function after loading library

// containing this function.

call_generic_get_navs (StratPars) {

for (int i = 0;

i < length (StratPars);

++i)

z_CPP_GenericgetNAVs(...)

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

Zircon-based GAM Backtesting System

Addressed problem
2 by using Zircon to
distribute each row
of StratPars to

zEngine compute
servers that execute
GenericgetNAVs()

on input received

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

//

Async C++ zAdapterFunction sends
each row to GenericgetNAVs() R

function running on many cores
12

Pros

• Easy to program,
evolve, and
administer

• Rapid configuration
and deployment

• Dynamically scalable
and transparently
fault-tolerant

• Affordable and cost
effective acceleration

for (x in MODELS) {

allres <-

call_get_navs (StratPars)

...

call_get_navs (StratPars, ...) {

// Use .Call (R capability) to

// call external C++ function

fun <- ”call_generic_get_navs”

val <- .Call (fun, StratPars,…)

}

// This function is written in C++.

// Any R code can call this

// function after loading library

// containing this function.

call_generic_get_navs (StratPars) {

for (int i = 0;

i < length (StratPars);

++i)

z_CPP_GenericgetNAVs(...)

}

Zircon-based GAM Backtesting System

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

GenericgetNAVs (…) {

// Compute-intensive

// calculations

}

13
© Copyright Zircon Computing, LLC 2005-2010

Performance Results Using IBM CoD

Performance gains by the zEnabled distributed and parallel version of R
application limited only by number of cores/machines available to run

experiments

• 13 quad
processor/
dual-core
(104 cores)
3.0 GHz
machines

• Runs 64-bit
Red-Hat
Enterprise
Linux 2.6

• Connected
using Gigabit
Ethernet

14
© Copyright Zircon Computing, LLC 2005-2010

Core

Zircon Cloud Enablement Architecture

Computing
Environment

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Web-based
GUI to

manage
and

monitor
servers and

pools

Command-line
utility to build,
deploy, and

manage
zPluginLibraries

Monitors
applications
and cores
to manage
resources

dynamically

License server
and

configuration
repository

User 4
[6-24 cores
weight 25]

User 2
[4-14 cores
weight 20]

User 1
[10-18 cores
weight 10]

App

App

User 3
[8-22 cores
weight 15]

App

App

App

15© Copyright Zircon Computing, LLC 2005-2010

User 1
[10-18 cores
weight 10]

Core

Computing
Environment

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

App

App

Web-based
GUI to

manage
and

monitor
servers and

pools

Command-line
utility to build,
deploy, and

manage
zPluginLibraries

Monitors
applications
and cores
to manage
resources

dynamically

License server
and

configuration
repository

Zircon Cloud Enablement Architecture

16© Copyright Zircon Computing, LLC 2005-2010

User 2
[4-14 cores
weight 20]

User 1
[10-18 cores
weight 10]

Core

Computing
Environment

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

App

App

Web-based
GUI to

manage
and

monitor
servers and

pools

Command-line
utility to build,
deploy, and

manage
zPluginLibraries

Monitors
applications
and cores
to manage
resources

dynamically

License server
and

configuration
repository

App

Zircon Cloud Enablement Architecture

17© Copyright Zircon Computing, LLC 2005-2010

User 3
[6-22 cores
weight 15]

User 2
[4-14 cores
weight 20]

User 1
[10-18 cores
weight 10]

Core

Computing
Environment

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

App

App

Web-based
GUI to

manage
and

monitor
servers and

pools

Command-line
utility to build,
deploy, and

manage
zPluginLibraries

Monitors
applications
and cores
to manage
resources

dynamically

License server
and

configuration
repository

App

App

Zircon Cloud Enablement Architecture

18© Copyright Zircon Computing, LLC 2005-2010

User 4
[6-24 cores
weight 25]

User 2
[4-14 cores
weight 20]

User 1
[10-18 cores
weight 10]

Core

Computing
Environment

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

App

App

User 3
[8-22 cores
weight 15]

Web-based
GUI to

manage
and

monitor
servers and

pools

Command-line
utility to build,
deploy, and

manage
zPluginLibraries

Monitors
applications
and cores
to manage
resources

dynamically

License server
and

configuration
repository

App

App

24

App

Zircon Cloud Enablement Architecture

19© Copyright Zircon Computing, LLC 2005-2010

Fastest Adaptive Computing
Performance

• Real-time Load Equalization
• Transparent Scalability
• Distributed Data Caching
• UltraFast™ Data Transfer

Minimizes development time for
HPC and Cloud Applications

• No Server-Side Development
• Maintains Application Security
• Distributed Data Caching

Zircon Benefits for R-based Apps
Quickest to Configure and Deploy

• Automatic Parallel Configuration
• Platform Independence
• Can operate and enable on any cloud,

including Amazon
• Can complement/coexist with Hadoop,

Map-Reduce, etc. in any cloud

Easiest, Most Intuitive to Use and
Deploy

• Automatic Load Equalization
• Automatic Service Discovery
• Automatic Real-time Monitoring and

Auditing
• Persistent and Recoverable

20© Copyright Zircon Computing, LLC 2005-2010

Profile
• International Asset Management Firm specializing in

systematic futures, ETFs and currency trading
Objective

• Run 100,000 GAM R-based models two order of
magnitude faster than previous processing times

Approach

• Integrated R with Zircon Computing’s ultra high performance middleware

Results

• Reduced processing time from 2,217 minutes (36 hours) to 22 minutes

(100x faster) on commodity ~100 core cloud

• Easy to program, deploy, and accelerate

Case Study Recap:

Garrett Asset Management: Zircon Enablement

“Zircon is an expert in the domain of providing increased performance and elastic scalability. Without question
they gave us game changing results. The heart of our competitive advantage is our ability to regularly backtest
new and existing models. By delivering to us the capability to quickly evaluate our R-based models, it provides
me and my investors with valuable information to remain competitive today.”

Dr. Elliot Noma CEO and Founder, Garrett Asset Management

21
© Copyright Zircon Computing, LLC 2005-2010

