Software for the joint modelling of longitudinal and survival data: the JoineR package

Pete Philipson

Collaborative work with Ruwanthi Kolamunnage-Dona, Inês Sousa, Peter Diggle, Rob Henderson, Paula Williamson & Gerwyn Green

useR! conference 2010, NIST, Gaithersburg, MD

- Longitudinal and survival data
- Joint modelling
- The JoineR package
- Simulations and performance
- Application to real data: liver cirrhosis and CD4 cell counts
- Future work and plans

Longitudinal and survival data

- Longitudinal data
 - Focus on linear mixed-effects model

Longitudinal sub-model

$$Y_{ij} = X_{1i}\beta_1 + R_{1i}(t_{ij}) + \epsilon_{ij}$$

- $R_1 = D_1 U_1$ with U_1 multivariate Gaussian random effects and D_1 a random effects design marix
- Survival data
 - Consider two alternatives for the event times F

Cox proportional hazards

$$h_i(t) = h_0(t) \exp(X_{2i}\beta_2 + R_{2i})$$

$$F \sim LN(\mu_F, \sigma_F^2)$$

Suitable for a range of objectives

- Analysing repeated measures Y in the presence of informative drop-out times F
- Analysis of survival times F acknowledging the association with Y, which may be a time-varying explanatory covariate subject to measurement error
- Relationship between Y and F is of joint interest
- Examples of two of these will be demonstrated later

Joint models

- Random effects (RE) joint model
 - Sub-models linked through common random effects U
 - Strength of association measured through parameter(s) γ , i.e. $R_2 = \gamma R_1$
 - Model fitting achieved via EM algorithm
- Transformation model
 - Sub-models formulated as multivariate Gaussian

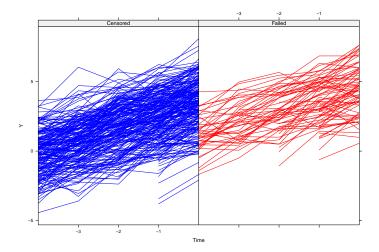
$$(Y, \log F) \sim MVN(\mu, \Sigma)$$

• Linked through covariance structure

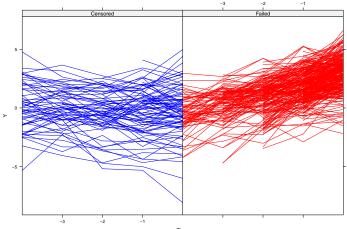
$$\Sigma = \left(egin{array}{cc} \sigma_Y^2 & g(heta) \ g'(heta) & \sigma_F^2 \end{array}
ight)$$

Inverse probability methods - see Scharfstein et al

- Longitudinal data formatting, visualising and simulation
- Joint model class and plotting function
- Simulating data from joint models
- Transformation model and random effects joint model fitting functions


★ Ξ →

Various simulation studies were carried out to test the software for each possible model. Functions to simulate data are part of the package.


- Options for continuous/categorical/factors
- Constant or parametric baseline hazard
- Balanced or unbalanced data
- User can choose level of drop-out/censoring and type of latent association

A B > A B >

Plotting simulated data: random intercept model

Plotting simulated data: random intercept and slope model

Simulation study: results for RE model

• Intercept only model: $R_1 = U_0$, $R_2 = \gamma R_1$

n	β_{11}	β_{12}	β_{21}	β_{22}	γ	σ_0^2	σ_{ϵ}^2
250	1.00	1.00	1.00	1.00	1.01	0.98	0.49
500	1.00	1.00	0.99	0.99	0.98	1.00	0.50
1000	1.00	1.00	1.00	1.00	0.99	1.00	0.50
True	1	1	1	1	1	1	0.5

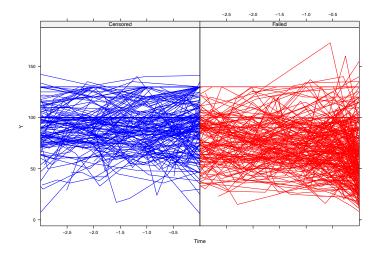
Table: Simulation results from intercept only model

• Intercept and slope models: $R_1 = U_0 + U_1 t$, $R_2 = \gamma R_1$

n	β_{11}	β_{12}	β_{21}	β_{22}	γ	σ_0^2	σ_1^2
250	1.00	0.99	0.99	1.00	0.25	0.99	1.99
500	1.00	0.99	1.01	1.00	0.25	0.99	1.99
1000	1.00	1.00	1.00	1.00	0.25	1.00	2.00
True	1	1	1	1	0.25	1	2

Table: Simulation results from intercept and slope model

A B > A B >


Application: liver cirrhosis data

Data on almost 500 patients from a randomised clinical trial of prednisone for liver cirrhosis patients. Further details can be found in Andersen *et al.*

• We can fit a joint model using JoineR

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

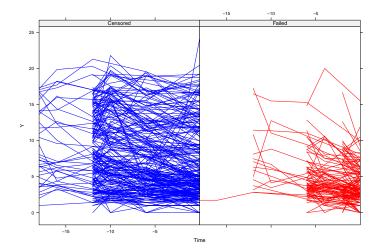
Liver cirrhosis data

(a)

э

Application: liver cirrhosis data (ctd.)

	Parameter	Estimates	
		Separate analysis	Joint analysis
Longitudinal			
	Intercept	69.99	70.31
	Treatment, P	11.63	11.28
	Time, t	1.33	0.25
	$P \times t$	-1.59	-1.24
	<i>t</i> = 0, <i>B</i>	-1.15	-1.48
	P imes B	-11.80	-11.45
Survival			
	Treatment	-0.10	-0.08
Association			
	γ	-	-0.04


▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Data collected on 467 HIV-infected patients to compare efficacy and safety of two antiretroviral drugs. Further details in Guo & Carlin and data available from Brad Carlin's software page.

We can fit a joint model using JoineR

```
fit_int <- joint(Y~ tt + tt_drug + gen + prev + strat, ``id'', ``tt'',
            Surv(s,cen)~sgrp + sgen + sprev + sstrat, model = ``int'',
            data = CarlinJointData, longsep = T, survsep = T)
```

CD4 cell count data: Guo & Carlin

Application II: CD4 cell count data (ctd.)

	Parameter	Estimates		
		Separate analysis	Joint analysis	
Longitudinal				
	Intercept	8.00	7.96	
	Time	-0.16	-0.17	
	Time $ imes$ Drug	0.02	0.02	
	Gender	-0.15	-0.12	
	Prev OI	-2.31	-2.34	
	Stratum	-0.11	-0.14	
Survival				
	Drug	0.22	0.30	
	Gender	-0.17	-0.17	
	Prev OI	0.65	0.65	
	Stratum	0.08	0.08	
Association				
	γ	-	-0.23	

聞き くほき くほき

- Deposit on CRAN
- Added flexibility for latent structure in model fitting user can choose D₁, D₂
- More flexibility in simulation routines
- See the project website at http://www.liv.ac.uk/joine-r/index.html

- Wulfsohn, M. S. & Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. *Biometrics*, 53, 330–339.
- Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics*, 1, 465–480.
- - Diggle, P., Sousa, I. and Chetwynd, A. G. (2007). Joint modelling of repeated measurements and time-to-event outcomes. The fourth Armitage lecture. *Statistics in Medicine*, 27, 2981–2998.
 - Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1998). Adjusting for nonignorable drop-out using semiparametric nonresponse models. *JASA*, 94, 1096-1146.
- Guo, X. & Carlin, B. (2004). Separate and joint modelling of longitudinal and time-to-event data using standard computer packages. *The American Statistician*, 58, 16–24.

Andersen, P. K., Borgan, O, Gill, R. D. & Kieding, N. *Statistical Models based on Counting Processes*. Springer: Berlin, 1997.