7/28/'10

UseR! The R User Conference 2010

An Algorithm for Unconstrained Quadratically Penalized Convex Optimization (post conference version)

Steven P. Ellis New York State Psychiatric Institute at Columbia University

PROBLEM

Minimize functions of form

$$F(h) = V(h) + Q(h), \quad h \in \mathbb{R}^d,$$

- 1. (\mathbb{R} = reals; d = positive integer.)
- 2. V is non-negative and convex.
- 3. V is computationally expensive.
- 4. Q is known, strictly convex, and quadratic.
- 5. (Unconstrained optimization problem)
- 6. Gradient, but not necessarily Hessian are available.

NONPARAMETRIC FUNCTION ESTIMATION

• Need to minimize:

$$F(h) = V(h) + \lambda h^T \mathbf{Q} h.$$

 $-\lambda > 0$ is "complexity parameter".

WAR STORY

- Work on a kernel-based survival analysis algorithm lead me to work on this optimization problem.
- At first I used BFGS, but it was very slow.
 - (Broyden, '70; Fletcher, '70; Goldfarb, '70; Shanno, '70)
 - Once I waited 19 hours for it to converge!
- Finding no software for unconstrained convex optimization (see below), I invented my own.

SOFTWARE FOR UNCONSTRAINED CONVEX OP-TIMIZATION

Didn't find such software.

- CVX (http://cvxr.com/cvx/) is a Matlab-based modeling system for convex optimization.
 - But a developer, Michael Grant, says that CVX wasn't designed for problems such as my survival analysis problem.

"QQMM"

- Developed algorithm "QQMM" ("quasi-quadratic minimization with memory"; Q^2M^2) to solve problems of this type.
 - Implemented in R.
 - Posted on STATLIB.

Iterative descent method

- An iteration: If h₁ ∈ ℝ^d has smallest F value found so far, compute one or more trial minimizers, h₂, until "sufficient decrease" is achieved.
- Assign $h_2 \rightarrow h_1$ to finish iteration.
- Repeat until evaluation limit is exceeded or stopping criteria are met.

CONVEX GLOBAL UNDERESTIMATORS

• If $h \in \mathbb{R}^d$, define a "quasi-quadratic function": $q_h(g) = \max\{V(h) + \nabla V(h) \cdot (g-h), 0\} + Q(h), \quad g \in \mathbb{R}^d$

• q_h is a convex "global underestimator" of F:

$$q_h \leq F.$$

• Possible trial minimand of F is the point h_2 where q_h is minimum, but that doesn't work very well.

L.U.B.'S

• If $h_{(1)}, \ldots h_{(n)} \in \mathbb{R}^d$ are points visited by algorithm so far, the *least upper bound (l.u.b.)* of

 $q_{h_{(1)}}, q_{h_{(2)}}, \dots, q_{h_{(n-1)}}, q_{h_{(n)}}$ is their pointwise maximum:

 $F_n(h) = \max\{q_{h_{(1)}}(h), q_{h_{(2)}}(h), \dots, q_{h_{(n-1)}}(h), q_{h_{(n)}}(h)\},\$

- F_n is also a convex global underestimator of F no smaller than any $q_{h_{(i)}}$.
- The point, h_2 where F_n is minimum is probably a good trial minimizer.
- But minimizing F_n may be at least as hard as minimizing F!

- As a compromise, proceed as follows.
 - Let $h_1 = h_{(n)}$ be best trial minimizer found so far and let $h_{(1)}, \ldots h_{(n)} \in \mathbb{R}$ be points visited by algorithm so far.
- - For $i = 1, 2, \ldots, n-1$ let $q_{h_{(i)},h_1}$ be l.u.b. of $q_{h_{(i)}}$ and q_{h_1} .
 - \ast "q double h"
 - * Convex global underestimator of F.
 - * Easy to minimize in closed form.

- Let i = j be index in $\{1, 2, ..., n 1\}$ such that minimum value of $q_{h_{(i)},h_1}$ is largest.
 - * I.e., no smaller than minimum value of any $q_{h_{(i)},h_1}$ (i = 1, ..., n 1).
 - \ast So $q_{h_{(j)},h_1}$ has a ''maximin'' property.
- Let h_2 be vector at which $q_{h_{(j)},h_1}$ achieves its minimum.
- (Actual method is slightly more careful than this.)
- If h_2 isn't better than current position, h_1 , back-track.

Minimizing $q_{h_{(i)},h_1}$ requires matrix operations.

• Limits size of problems for which Q^2M^2 can be used to no more than, say, 4 or 5 thousand variables.

STOPPING RULE

- Trial values h_2 are minima of nonnegative global underestimators of F.
- Values of these global underestimators at corresponding h_2 's are lower bounds on min F.
- Store cumulative maxima of these lower bounds.
 - Let L denote current value of cumulative maximum.
 - -L is a lower bound on min F.

• If h_1 is current best trial minimizer, relative difference between $F(h_1)$ and L exceeds relative difference between $F(h_1)$ and min F.

$$\frac{F(h_1) - L}{L} \ge \frac{F(h_1) - \min F}{\min F}$$

• I.e., we can explicitly bound relative error in $F(h_1)$ as an estimate of min F!

• Choose small $\epsilon > 0$.

- I often take $\epsilon = 0.01$.

- When upper bound on relative error first falls below threshold ϵ , STOP.
- Call this "convergence".
- Upon convergence you're guaranteed to be within ϵ of the bottom.

- Gives good control over stopping.
- That is important because . . .

STOPPING EARLY MAKES SENSE IN STATISTICAL ESTIMATION

- In statistical estimation, the function, F, depends, through V, on noisy data so:
- In statistical estimation there's no point in taking time to achieve great accuracy in optimization.

$$F(h) = V(h) + Q(h), \quad h \in \mathbb{R}^d,$$

Q^2M^2 IS SOMETIMES SLOW

- Q^2M^2 tends to close in on minimum rapidly.
- But sometimes is very slow to converge.
 - E.g., when Q is nearly singular.
 - E.g., when complexity parameter, λ , is small.
- Distribution of number of evaluations needed for convergence has long right hand tail as you vary over optimization problems.

SIMULATIONS: "PHILOSOPHY"

- If F is computationally expensive then simulations are unworkable.
- A short computation time for optimizations is desired.
- When F is computationally expensive then computation time is roughly proportional to number of function evaluations.
- Simulate computationally cheap *F*'s, but track *num*ber of evaluations not computation time.

COMPARE Q^2M^2 AND BFGS.

- Why BFGS?
 - BFGS is widely used.
 - * "Default" method
 - Like $Q^2 M^2$, BFGS uses gradient and employs vector-matrix operations.
 - Optimization maven at NYU (Michael Overton) suggested it as comparator!

- (Specifically, the "BFGS" option in the R function optim that was used. John C. Nash - personal communication - pointed out at the conference that other algorithms called "BFGS" are faster than the BFGS in optim.)

SIMULATION STRUCTURE

- I chose several relevant estimation problems.
- For each of variety of choices of complexity parameter λ use both $Q^2 M^2$ and BFGS to fit model to randomly generated training sample and test data.
 - Either simulated data or real data randomly split into two subsamples.
- Repeat 1000 times for each choice of λ .
- Gather numbers of evaluations required and other statistics describing simulations.

• Use

Gibbons, Olkin, Sobel ('99) Selecting and Ordering Populations: A New Statistical Methodology

to select the range of λ values that, with 95% confidence, contains λ with lowest mean test error.

• Conservative to use largest λ in selected group.

SIMULATIONS: SUMMARY

- $L^{3/2}$ kernel-based regression.
 - For largest selected λ values, BFGS required 3 times as many evaluations compared to $Q^2 M^2$.
- Penalized logistic regression: Wisconsin Breast Cancer data
 - University of California, Irvine Machine Learning Repository
 - For largest selected λ values, BFGS required 2.7 times as many evaluations compared to $Q^2 M^2$.

- Penalized logistic regression: R's "Titanic" data.
 - For largest selected λ values, $Q^2 M^2$ required nearly twice as many evaluations compared to BFGS.
 - I.e., this time BFGS was better.
 - Hardly any penalization was required: Selected λ 's were small.

SURVIVAL ANALYSIS AGAIN

- On a real data set with good choice of λ , $Q^2 M^2$ optimized my survival analysis penalized risk function in 23 minutes.
- BFGS took:
 - 3.4 times longer with "oracle" telling BFGS when to stop.
 - 6.5 times longer without "oracle".
 - "Oracle" means using information from the "6.5 without oracle" and Q^2M^2 runs to select the number of interations at which BFGS achieves the same level of accuracy as does Q^2M^2 .

CONCLUSIONS

• QQMM (Q^2M^2) is an algorithm for minimizing convex functions of form

$$F(h) = V(h) + Q(h), \quad h \in \mathbb{R}^d.$$

-V is convex and non-negative.

- -Q is known, quadratic, strictly convex.
- $-Q^2M^2$ is especially appropriate when V is expensive to compute.
- Allows good control of stopping.

- Needs (sub)gradient.
- Utilizes matrix algebra. This limits maximum size of problems to no more than 4 or 5 thousand variables.
- $Q^2 M^2$ is often quite fast, but can be slow if Q is nearly singular.