> 7/28/'10

UseR! The R User Conference 2010

An Algorithm for Unconstrained Quadratically Penalized Convex Optimization (post conference version)

Steven P. Ellis
New York State Psychiatric Institute at Columbia University

PROBLEM

Minimize functions of form

$$
F(h)=V(h)+Q(h), \quad h \in \mathbb{R}^{d},
$$

1. $(\mathbb{R}=$ reals; $d=$ positive integer. $)$
2. V is non-negative and convex.
3. V is computationally expensive.
4. Q is known, strictly convex, and quadratic.
5. (Unconstrained optimization problem)
6. Gradient, but not necessarily Hessian are available.

NONPARAMETRIC FUNCTION ESTIMATION

- Need to minimize:

$$
F(h)=V(h)+\lambda h^{T} \mathbf{Q} h
$$

$-\lambda>0$ is "complexity parameter".

WAR STORY

- Work on a kernel-based survival analysis algorithm lead me to work on this optimization problem.
- At first I used BFGS, but it was very slow.
- (Broyden, '70; Fletcher, '70; Goldfarb, '70; Shanno, '70)
- Once I waited 19 hours for it to converge!
- Finding no software for unconstrained convex optimization (see below), I invented my own.

SOFTWARE FOR UNCONSTRAINED CONVEX OPTIMIZATION

Didn't find such software.

- CVX (http://cvxr.com/cvx/) is a Matlab-based modeling system for convex optimization.
- But a developer, Michael Grant, says that CVX wasn't designed for problems such as my survival analysis problem.
"QQMM"
- Developed algorithm "QQMM" ("quasi-quadratic minimization with memory"; $Q^{2} M^{2}$) to solve problems of this type.
- Implemented in R.
- Posted on STATLIB.

Iterative descent method

- An iteration: If $h_{1} \in \mathbb{R}^{d}$ has smallest F value found so far, compute one or more trial minimizers, h_{2}, until "sufficient decrease" is achieved.
- Assign $h_{2} \rightarrow h_{1}$ to finish iteration.
- Repeat until evaluation limit is exceeded or stopping criteria are met.

CONVEX GLOBAL UNDERESTIMATORS

- If $h \in \mathbb{R}^{d}$, define a "quasi-quadratic function":

$$
q_{h}(g)=\max \{V(h)+\nabla V(h) \cdot(g-h), 0\}+Q(h), \quad g \in \mathbb{R}^{d}
$$

- q_{h} is a convex "global underestimator" of F :

$$
q_{h} \leq F .
$$

- Possible trial minimand of F is the point h_{2} where q_{h} is minimum, but that doesn't work very well.

L.U.B.'S

- If $h_{(1)}, \ldots h_{(n)} \in \mathbb{R}^{d}$ are points visited by algorithm so far, the least upper bound (I.u.b.) of

$$
q_{h_{(1)}}, q_{h_{(2)}}, \ldots, q_{h_{(n-1)}}, q_{h_{(n)}}
$$

is their pointwise maximum:

$$
F_{n}(h)=\max \left\{q_{h_{(1)}}(h), q_{h_{(2)}}(h), \ldots, q_{h_{(n-1)}}(h), q_{h_{(n)}}(h)\right\}
$$

- F_{n} is also a convex global underestimator of F no smaller than any $q_{h_{(i)}}$.
- The point, h_{2} where F_{n} is minimum is probably a good trial minimizer.
- But minimizing F_{n} may be at least as hard as minimizing F !
- As a compromise, proceed as follows.
- Let $h_{1}=h_{(n)}$ be best trial minimizer found so far and let $h_{(1)}, \ldots h_{(n)} \in \mathbb{R}$ be points visited by algorithm so far.
- - For $i=1,2, \ldots, n-1$ let $q_{h_{(i)}, h_{1}}$ be I.u.b. of $q_{h_{(i)}}$ and $q_{h_{1}}$.
* " q double h "
* Convex global underestimator of F.
* Easy to minimize in closed form.
- Let $i=j$ be index in $\{1,2, \ldots, n-1\}$ such that minimum value of $q_{h_{(i)}, h_{1}}$ is largest.
* I.e., no smaller than minimum value of any $q_{h_{(i)}, h_{1}}(i=1, \ldots, n-1)$.
* So $q_{h_{(j)}, h_{1}}$ has a "maximin" property.
- Let h_{2} be vector at which $q_{h_{(j)}, h_{1}}$ achieves its minimum.
- (Actual method is slightly more careful than this.)
- If h_{2} isn't better than current position, h_{1}, backtrack.

Minimizing $q_{h_{(i)}, h_{1}}$ requires matrix operations.

- Limits size of problems for which $Q^{2} M^{2}$ can be used to no more than, say, 4 or 5 thousand variables.

STOPPING RULE

- Trial values h_{2} are minima of nonnegative global underestimators of F.
- Values of these global underestimators at corresponding h_{2} 's are lower bounds on $\min F$.
- Store cumulative maxima of these lower bounds.
- Let L denote current value of cumulative maximum.
- L is a lower bound on $\min F$.
- If h_{1} is current best trial minimizer, relative difference between $F\left(h_{1}\right)$ and L exceeds relative difference between $F\left(h_{1}\right)$ and $\min F$.

$$
\frac{F\left(h_{1}\right)-L}{L} \geq \frac{F\left(h_{1}\right)-\min F}{\min F}
$$

- I.e., we can explicitly bound relative error in $F\left(h_{1}\right)$ as an estimate of min F !
- Choose small $\epsilon>0$.
- I often take $\epsilon=0.01$.
- When upper bound on relative error first falls below threshold ϵ, STOP.
- Call this "convergence".
- Upon convergence you're guaranteed to be within ϵ of the bottom.

- Gives good control over stopping.
- That is important because ...

STOPPING EARLY MAKES SENSE IN STATISTICAL ESTIMATION

- In statistical estimation, the function, F, depends, through V, on noisy data so:
- In statistical estimation there's no point in taking time to achieve great accuracy in optimization.

$$
F(h)=V(h)+Q(h), \quad h \in \mathbb{R}^{d}
$$

$Q^{2} M^{2}$ IS SOMETIMES SLOW

- $Q^{2} M^{2}$ tends to close in on minimum rapidly.
- But sometimes is very slow to converge.
- E.g., when Q is nearly singular.
- E.g., when complexity parameter, λ, is small.
- Distribution of number of evaluations needed for convergence has long right hand tail as you vary over optimization problems.

SIMULATIONS: "PHILOSOPHY"

- If F is computationally expensive then simulations are unworkable.
- A short computation time for optimizations is desired.
- When F is computationally expensive then computation time is roughly proportional to number of function evaluations.
- Simulate computationally cheap F's, but track number of evaluations not computation time.

COMPARE $Q^{2} M^{2}$ AND BFGS.

- Why BFGS?
- BFGS is widely used.
* "Default" method
- Like $Q^{2} M^{2}$, BFGS uses gradient and employs vector-matrix operations.
- Optimization maven at NYU (Michael Overton) suggested it as comparator!
- (Specifically, the "BFGS" option in the R function optim that was used. John C. Nash - personal communication - pointed out at the conference that other algorithms called "BFGS" are faster than the BFGS in optim.)

SIMULATION STRUCTURE

- I chose several relevant estimation problems.
- For each of variety of choices of complexity parameter λ use both $Q^{2} M^{2}$ and BFGS to fit model to randomly generated training sample and test data.
- Either simulated data or real data randomly split into two subsamples.
- Repeat 1000 times for each choice of λ.
- Gather numbers of evaluations required and other statistics describing simulations.
- Use

Gibbons, Olkin, Sobel ('99) Selecting and Ordering Populations: A New Statistical Methodology
to select the range of λ values that, with 95% confidence, contains λ with lowest mean test error.

- Conservative to use largest λ in selected group.

SIMULATIONS: SUMMARY

- $L^{3 / 2}$ kernel-based regression.
- For largest selected λ values, BFGS required 3 times as many evaluations compared to $Q^{2} M^{2}$.
- Penalized logistic regression: Wisconsin Breast Cancer data
- University of California, Irvine Machine Learning Repository
- For largest selected λ values, BFGS required 2.7 times as many evaluations compared to $Q^{2} M^{2}$.
- Penalized logistic regression: R's "Titanic" data.
- For largest selected λ values, $Q^{2} M^{2}$ required nearly twice as many evaluations compared to BFGS.
- I.e., this time BFGS was better.
- Hardly any penalization was required: Selected λ 's were small.

SURVIVAL ANALYSIS AGAIN

- On a real data set with good choice of $\lambda, Q^{2} M^{2}$ optimized my survival analysis penalized risk function in 23 minutes.
- BFGS took:
- 3.4 times longer with "oracle" telling BFGS when to stop.
- 6.5 times longer without "oracle".
- "Oracle" means using information from the " 6.5 without oracle" and $Q^{2} M^{2}$ runs to select the number of interations at which BFGS achieves the same level of accuracy as does $Q^{2} M^{2}$.

CONCLUSIONS

- QQMM $\left(Q^{2} M^{2}\right)$ is an algorithm for minimizing convex functions of form

$$
F(h)=V(h)+Q(h), \quad h \in \mathbb{R}^{d}
$$

$-V$ is convex and non-negative.

- Q is known, quadratic, strictly convex.
- $Q^{2} M^{2}$ is especially appropriate when V is expensive to compute.
- Allows good control of stopping.
- Needs (sub)gradient.
- Utilizes matrix algebra. This limits maximum size of problems to no more than 4 or 5 thousand variables.
- $Q^{2} M^{2}$ is often quite fast, but can be slow if Q is nearly singular.

