Factor Analysis for Multiple Testing : an R package for large-scale significance testing under dependence

Maela Kloareg, Chloé Friguet \& David Causeur

The UseR! Conference, July 2009 Agrocampus Ouest, France

Outline

(1) Background

(2) Factor Analysis for Multiple Testing

(3) The FAMT package procedure

4) Concluding comments

Impact of dependence in multiple testing

Multiple testing: to point out genes which expressions (Y) significantly depend on the experimental condition (X) High dimension: a few microarrays and a huge number of gene expressions
Gene Expressions (Y) X

A major concern: the biological links among genes and the high dimensional setting generates a large-scale correlation structure, which induces high instability in multiple testing procedures.

Distribution of error rates in multiple tests

 Distribution of False Discovery Proportion $\left(V_{t} / R_{t}\right)$ on 1.000 simulated datasets/scenario (Friguet et al., 2009, JASA)

	Declared HO	Declared $H 1$	Total
True H0	$\mathbf{U}_{\mathbf{t}}$	$\mathbf{V}_{\mathbf{t}}$	$m 0$
True H1	$\mathbf{T}_{\mathbf{t}}$	$\mathbf{S}_{\mathbf{t}}$	$m 1$
	$m-R_{\mathbf{t}}$	$R_{\mathbf{t}}$	m

Distribution of error rates in multiple tests

Distribution of Non-Discovery Proportion ($T_{t} / m 1$) on 1.000 simulated datasets/scenario (Friguet et al., 2009, JASA)

	Declared $H 0$	Declared $H 1$	Total
True HO	$\mathbf{U}_{\mathbf{t}}$	$\mathbf{V}_{\mathbf{t}}$	$m 0$
True H 1	$\mathbf{T}_{\mathbf{t}}$	$\mathbf{S}_{\mathbf{t}}$	$m 1$
	$m-R_{\mathrm{t}}$	R_{t}	m

Outline

(1) Background

(2) Factor Analysis for Multiple Testing
(3) The FAMT package procedure
(4) Concluding comments

Factor Analysis for Multiple Testing

The common information shared by all the variables (m) is modeled by a factor analysis structure.
The common factors Z : small number $(q \ll m)$ of latent variables (Friguet et al., 2009, JASA)

$$
\begin{gathered}
Y^{(k)}=\beta_{0}^{(k)}+x^{\prime} \beta^{(k)}+B Z+\boldsymbol{\varepsilon}^{(k)} \\
Z \sim N\left(0 ; I_{q}\right), V(\boldsymbol{\varepsilon})=\Psi
\end{gathered}
$$

Factor Analysis for Multiple Testing

The common information shared by all the variables (m) is modeled by a factor analysis structure.
The common factors Z : small number $(q \ll m)$ of latent variables (Friguet et al., 2009, JASA)

Similar idea: Surrogate Variable Analysis method, Leek and Storey, 2007, 2008.

Factor-adjusted test statistics

The adjusted test statistics are conditionally centered and scaled version of usual test statistics

Conditional distribution of the usual test statistic $T^{(k)}$

$$
\mathbb{E}\left(T^{(k)} \mid Z\right)=\tau_{k}+\frac{b_{k}^{\prime}}{\sigma_{k}} \tau(Z), \quad \operatorname{Var}\left(T^{(k)} \mid Z\right)=\frac{\psi_{k}^{2}}{\sigma_{k}^{2}}
$$

Conditional centering and scaling

$$
T_{z}^{(k)}=\frac{\sigma_{k}}{\psi_{k}}\left[T^{(k)}-\frac{b_{k}^{\prime}}{\sigma_{k}} \tau(Z)\right]
$$

with $\mathbb{E}\left(T_{z}^{(k)}\right)=\frac{\tau_{k}}{\sqrt{1-h_{k}^{2}}}$ and $\operatorname{Var}\left(T_{z}\right)=I_{m}$.

Distribution of error rates in multiple tests

Distribution of False Discovery Proportion on 1.000 simulated datasets/scenario (Friguet et al., 2009, JASA)

Usual t-tests
Factor-adjusted t-tests

Distribution of error rates in multiple tests

Distribution of Non-Discovery Proportion on 1.000 simulated datasets/scenario (Friguet et al., 2009, JASA)

Usual t-tests
Factor-adjusted t-tests

Outline

(1) Background
(2) Factor Analysis for Multiple Testing
(3) The FAMT package procedure
4) Concluding comments

The FAMT package steps

(1) Estimation of the number of factors
(2) Factor Analysis model (using $\widehat{\mathcal{M}}_{0}=\left\{k, P_{k} \geq \alpha\right\}$)
(3) Multiple testing: conditional statistics and p-values $\widehat{\mathcal{M}}_{0}$ updated, step 1 to 3 are done twice
4. Estimation of the proportion of null hypotheses
(5) Benjamini and Hochberg's procedure to control the FDR

The FAMT package steps

(1) Estimation of the number of factors
(2) Factor Analysis model (using $\widehat{\mathcal{M}}_{0}=\left\{k, P_{k} \geq \alpha\right\}$)
(3) Multiple testing : conditional statistics and p-values $\widehat{\mathcal{M}}_{0}$ updated, step 1 to 3 are done twice
(4) Estimation of the proportion of null hypotheses
(5) Benjamini and Hochberg's procedure to control the FDR

Illustration on the Lymphoma dataset (Alizadeh et al. 2000)

- 32 samples : 2 classes of B cell-like diffuse large cell lymphoma (DLCL) : germinal center B cell-like DLCL (18 samples) and active B cell-like DLCL (14 samples)
- Expression levels of 10295 genes

1/ Estimation of the number of factors

The number of factors is chosen to reduce the variance of the number of false positives in multiple tests.

2/ Factor Analysis model

To deal with high-dimension, the model parameters are estimated with an EM-algorithm (Rubin and Thayer, 1982) :

- E step : estimation of Z
- M step : estimation of B and ψ

$$
\begin{gathered}
Y^{(k)}=\beta_{0}^{(k)}+x^{\prime} \beta^{(k)}+B Z+\mathcal{E}^{(k)} \\
Z \sim N\left(0 ; I_{q}\right), V(\varepsilon)=\Psi
\end{gathered}
$$

3 / Multiple testing (conditional p-values)

3/ Multiple testing (conditional p-values)

4/ Estimation of the proportion of null hypotheses

Key parameter to control the error rates.
FAMT provides 2 estimation algorithms :

- one based on the density of the conditional p-values
- the other uses a modified smoothing spline approach (based on Storey and Tibshirani, 2003).

Diagnostic Plot: Distribution of conditional p-values and estimated piO

5/ Benjamini and Hochberg's procedure (q-values)

Heat maps

Cut off on the adjusted q-values:5\% FDR control level (389 genes)

Observed values

Factor-adjusted values

Outline

(1) Background

2) Factor Analysis for Multiple Testing

(3) The FAMT package procedure
(4) Concluding comments

Concluding comments

- FAMT procedure : large improvements in multiple testing procedures regarding the FDR control and the power (decreasing the non-discovery proportion)
- The interpretation of the factors can be useful for biologists
- The factor-adjustment of test statistics also decreases misclassification rates and improves stability of model selection in supervised classification
- FAMT \&package available at http://www.agrocampus-ouest.fr/math/FAMT

Interpretation of the factors

