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The Problem

• The size of datasets is growing fast in the social
sciences—e.g., administrative data with millions of
observations

• Our methods are becoming computationally intensive:
MCMC, genetic optimization, simulating annealing, and
MATCHING

• These methods are often used for problems whose
asymptotic order is exponential: O(cN), c > 1

• We try to turn exponential problems into polynomial time
problems:

• O(N2log(N)) for pair matching
• O(N3log(N max(dist))) for full matching
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The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R
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Example: Matching

• The goal of matching is to make the distribution of
observed covariates the same between treatment and
control groups

• People measure covariate balance various ways:
• minimize mean differences of observed confounders across

matched treated and control units
• minimize the discrepancy in QQ-plots across the variables

• The search space of possible matched datasets grows
exponentially with N: it’s a Traveling Salesman problem
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Propensity Score (pscore)

• The propensity score is:
Pr(Ti = 1|Xi) = E(Ti |Xi)

• Almost always estimated by logistic regression
• It greatly helps to reduces the difficulty of the matching

problem.
• If one matches on and balances the propensity score, one

balances the confounders X of concern.
• Balance: to make the distributions the same between

treatment and control groups
• Multidimensional covariate balance is difficult to measure
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Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates
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Genetic Matching (GenMatch)

Genetic matching is a new general method for performing
multivariate matching. GenMatch:
• algorithmically maximizes the balance of observed

potential confounders across matched treated and control
units

• uses the pscore (if one has one) and weights covariates so
that balance is maximized

• uses an evolutionary search algorithm to determine the
weight each covariate is given

• genetic algorithm developed by Sekhon and Mebane
(1998) is used.
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Pscore Matching Example

library(Matching)
data(lalonde)

Y <- lalonde$re78 #the outcome of interest
Tr <- lalonde$treat #the treatment of interest

# pscore model
glm1 <- glm(treat~age + educ + black +

hisp + married + nodegr + re74 + re75,
family=binomial, data=lalonde)

# Matching
rr1 <- Match(Y=Y, Tr=Tr, X=glm1$fitted)
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QQ Plot of Before and After Pscore Matching
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GenMatch Matching Example

X <- cbind(age, educ, black, hisp, married, nodegr,
re74, re75, u74, u75)

BalanceMatrix <- cbind(age, I(age^2), educ, I(educ^2),
black, hisp, married, nodegr, re74 ,
I(re74^2), re75, I(re75^2), u74, u75,
I(re74*re75), I(age*nodegr),
I(educ*re74), I(educ*re75))

gen1 <- GenMatch(Tr=Tr, X=X,
BalanceMatrix=BalanceMatrix)

mgen1 <- Match(Y=Y, Tr=Tr, X=X, Weight.matrix=gen1)
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QQ Plot of Pscore and GenMatch
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Properties of Matching Algorithms

• When can matching confounders make bias worse? e.g.,
what if the propensity score model is incorrect?

• All affinely invariant matching methods have the Equal
Percent Bias Reduction (EPBR) property under some
conditions.

• If X are distributed with ellipsoidal distributions, then the
EPBR property holds for affinely invariant matching
methods (Rubin and Thomas 1992).

• There is an extension to a restricted class of mixtures
(Rubin and Stuart 2006): discriminant mixtures of
proportional ellipsoidally symmetric distributions.
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Equal Percent Bias Reduction (EPBR)

• Let Z be the expected value of X in the matched control
group. Then we say that a matching procedure is EPBR if

E(X |T = 1)− Z = γ {E(X |T = 1)− E(X |T = 0)}
for a scalar 0 ≤ γ ≤ 1.

• We say that a matching method is EPBR for X because
the percent reduction in the mean biases for each of the
matching variables is the same.

• In general, if a matching method is not EPBR, then the
bias for some linear function of X is increased.

• We may care about nonlinear functions of X .
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Genetic Matching Computationally Intensive

• Raessler and Rubin (2005) use GenMatch for a dataset
with over 2 million observations

• Political get-out-the-vote databases also have millions of
observations

• Marketing data has millions of observations and thousands
of covariates

• finding the best matches by brute force is a computational
problem whose time increases exponentially with N.
Traveling Salesman problem
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To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X
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Using Multiple Computer Chips to Run GenMatch

1 CPU 2 CPUs 3 CPUs 4 CPUs

1780 Observations
run time (seconds) 2557 1372 950 749
x CPU/1 CPU run time 0.54 0.37 0.29

1335 Observations
run time (seconds) 826 475 317 255
x CPU/1 CPU run time 0.58 0.38 0.31

890 Observations
run time (seconds) 532 338 233 193
x CPU/1 CPU run time 0.64 0.44 0.36
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The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead
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Quantum Computing
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Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU
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Mahalanobis Distance

• The most common method of multivariate matching is
based on the Mahalanobis distance. The Mahalanobis
distance measure between any two column vectors is
defined as:

md(Xi , Xj) =
{
(Xi − Xj)

′S−1(Xi − Xj)
} 1

2

where Xi and Xj are two different observations and S is
the sample covariance matrix of X .

• Mahalanobis distance is an appropriate distance measure
if each covariate has an elliptic distribution whose shape is
common between treatment and control groups (Mitchell
and Krzanowski 1985, 1989).

• In finite samples, Mahalanobis distance will not be optimal.
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More General Method of Measuring Distance

• A more general way to measure distance is defined by:

d(Xi , Xj) =
{

(Xi − Xj)
′ (S−1/2)′ WS−1/2(Xi − Xj)

} 1
2

where W is a k × k positive definite weight matrix and
S1/2 is the Cholesky decomposition of S which is the
variance-covariance matrix of X .

• All elements of W are zero except down the main diagonal.
The main diagonal consists of k parameters which must be
chosen.

• This leaves the problem of choosing the free elements of
W . For identification, there are only k − 1 free parameters.



The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

More General Method of Measuring Distance

• A more general way to measure distance is defined by:

d(Xi , Xj) =
{

(Xi − Xj)
′ (S−1/2)′ WS−1/2(Xi − Xj)

} 1
2

where W is a k × k positive definite weight matrix and
S1/2 is the Cholesky decomposition of S which is the
variance-covariance matrix of X .

• All elements of W are zero except down the main diagonal.
The main diagonal consists of k parameters which must be
chosen.

• This leaves the problem of choosing the free elements of
W . For identification, there are only k − 1 free parameters.



The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

50
0

10
00

15
00

20
00

25
00

Dehejia Wahba Sample

Lowest p−value (KS & paired t−tests)

E
st

im
at

ed
 A

ve
ra

ge
 T

re
at

m
en

tt 
E

ffe
ct

 fo
r 

T
re

at
ed

 (
$)

●

●

●

●

●

● ●●●●● ●●
●

●
●

●●

●

● ●
●

● ●● ●●● ●●

●

●

●●
●

●●●
●● ●

●●

●

●

●
●●

●
●

●●
●

●●

●

●●
●

●

●●●● ●

●

●

●

●
●●

●

●

●

● ●● ●●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

● ● ●
●

● ●
●

●

●

●
●

● ●
●

●

●●●
●

●

● ●●

●

●●●●●
●

● ●●

●

●●

●

●●●

●

●●●● ●
●

●

●
●

●

●

●●●

●

●
●● ●●●●● ●●

●

●

●
●

●

●

●● ●

●

● ●

●

●
●

●

●
●●●●●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

● ●

●

●
●

●

●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Experimental benchmark estimate ($1794)



The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Parameterization

• GenMatch uses the propensity score if it is known or if it
can be estimated.

• The propensity score is estimated and its linear predictor,
µ̂, is matched upon along with the covariates X once they
have been adjusted so as to be uncorrelated with the linear
predictor.

• Combining is good because:
• Propensity score matching is good at minimizing the

discrepancy along the propensity score
• Mahalanobis distance is good at minimizing the distance

between individual coordinates of X (orthogonal to the
propensity score) (Rosenbaum and Rubin 1985).
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Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”
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Measuring Balance

• There are many different ways of measuring balance and I
cannot summarize the vast literature here.

• The choice of balance statistics will be domain specific.
E.g., use randomization inference if you can as Bowers
and Hansen (2005) do.

• But the measures should be sensitive to different
departures from balance.

• It is important the maximum discrepancy be small.
“p-values” conventionally understood to signal balance
(e.g., 0.10) are often too low to produce reliable estimates.

• the p-values from these balance “tests” cannot be
interpreted as true probabilities
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Measures of Balance

• Algorithm uses cumulative probability distribution functions
of a variety of standardized statistics which are often
thought to be test statistics

• Formal hypothesis tests of balance should not be
conducted because no measure of balance is a monotonic
function of bias and because balance should be optimized
without limit.

• However, descriptive measures of discrepancy ignore
information related to bias

• By default, t-tests for the difference of means and
nonparametric bootstrap Kolmogorov-Smirnov
distributional test statistics are used.

• The analyst may use any measures she desires—e.g.,
additional nonlinear functions and higher order
interactions.
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Genetic Optimization

• The optimization problem described above is difficult and
irregular, and we utilize an evolutionary algorithm
developed by Sekhon and Mebane (1998) called
GENOUD.

• Theorems in support of GAs are based on interpreting
them as finite and irreducible Markov chains.

• Random search also works better than the usual matching
methods, but is less efficient than GENOUD.
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Issues with R

• The malloc problem effects system BLAS performance
• I could not link R against Dough Lea’s malloc (dmalloc)

stably
• But dmalloc is used in the Windows port (by B. Ripley)
• But Windows is a different tree!
• I compile Matching against dmalloc
• A better way to extend R is needed
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