
The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

NP-complete Problems and Large Datasets:
Examples from the Matching Package

Jasjeet S. Sekhon

UC Berkeley

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Problem

• The size of datasets is growing fast in the social
sciences—e.g., administrative data with millions of
observations

• Our methods are becoming computationally intensive:
MCMC, genetic optimization, simulating annealing, and
MATCHING

• These methods are often used for problems whose
asymptotic order is exponential: O(cN), c > 1

• We try to turn exponential problems into polynomial time
problems:

• O(N2log(N)) for pair matching
• O(N3log(N max(dist))) for full matching

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Problem

• The size of datasets is growing fast in the social
sciences—e.g., administrative data with millions of
observations

• Our methods are becoming computationally intensive:
MCMC, genetic optimization, simulating annealing, and
MATCHING

• These methods are often used for problems whose
asymptotic order is exponential: O(cN), c > 1

• We try to turn exponential problems into polynomial time
problems:

• O(N2log(N)) for pair matching
• O(N3log(N max(dist))) for full matching

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Problem

• The size of datasets is growing fast in the social
sciences—e.g., administrative data with millions of
observations

• Our methods are becoming computationally intensive:
MCMC, genetic optimization, simulating annealing, and
MATCHING

• These methods are often used for problems whose
asymptotic order is exponential: O(cN), c > 1

• We try to turn exponential problems into polynomial time
problems:

• O(N2log(N)) for pair matching
• O(N3log(N max(dist))) for full matching

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Limits of Computational Power

• Faster computers will take care of our problems?
• With faster and cheaper computers, it is easier to get more

data
• Moore’s Law is currently holding because of

parallelization–e.g., Core Duo, Cell processor
• Is parallel code worth the effort?
• R was not designed for software development and

computationally intensive algorithms—e.g., pass by value
• Software engineering is not well supported in R

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Example: Matching

• The goal of matching is to make the distribution of
observed covariates the same between treatment and
control groups

• People measure covariate balance various ways:
• minimize mean differences of observed confounders across

matched treated and control units
• minimize the discrepancy in QQ-plots across the variables

• The search space of possible matched datasets grows
exponentially with N: it’s a Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Example: Matching

• The goal of matching is to make the distribution of
observed covariates the same between treatment and
control groups

• People measure covariate balance various ways:
• minimize mean differences of observed confounders across

matched treated and control units
• minimize the discrepancy in QQ-plots across the variables

• The search space of possible matched datasets grows
exponentially with N: it’s a Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Example: Matching

• The goal of matching is to make the distribution of
observed covariates the same between treatment and
control groups

• People measure covariate balance various ways:
• minimize mean differences of observed confounders across

matched treated and control units
• minimize the discrepancy in QQ-plots across the variables

• The search space of possible matched datasets grows
exponentially with N: it’s a Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Example: Matching

• The goal of matching is to make the distribution of
observed covariates the same between treatment and
control groups

• People measure covariate balance various ways:
• minimize mean differences of observed confounders across

matched treated and control units
• minimize the discrepancy in QQ-plots across the variables

• The search space of possible matched datasets grows
exponentially with N: it’s a Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Propensity Score (pscore)

• The propensity score is:
Pr(Ti = 1|Xi) = E(Ti |Xi)

• Almost always estimated by logistic regression
• It greatly helps to reduces the difficulty of the matching

problem.
• If one matches on and balances the propensity score, one

balances the confounders X of concern.
• Balance: to make the distributions the same between

treatment and control groups
• Multidimensional covariate balance is difficult to measure

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Propensity Score (pscore)

• The propensity score is:
Pr(Ti = 1|Xi) = E(Ti |Xi)

• Almost always estimated by logistic regression
• It greatly helps to reduces the difficulty of the matching

problem.
• If one matches on and balances the propensity score, one

balances the confounders X of concern.
• Balance: to make the distributions the same between

treatment and control groups
• Multidimensional covariate balance is difficult to measure

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Propensity Score (pscore)

• The propensity score is:
Pr(Ti = 1|Xi) = E(Ti |Xi)

• Almost always estimated by logistic regression
• It greatly helps to reduces the difficulty of the matching

problem.
• If one matches on and balances the propensity score, one

balances the confounders X of concern.
• Balance: to make the distributions the same between

treatment and control groups
• Multidimensional covariate balance is difficult to measure

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Searching for the Correct Propensity Score Model

• People use methods to simplify the problem of searching
for the best set of matches: propensity score (pscore)

• This simplification turns the problem into a polynomial time
problem: O(N2log(N)) for pair matching

• How do we know what is the correct propensity score
model?

• Matching on the “correct” pscore obtains covariate
balance–it’s a tautology!

• Trail-and-error specification search for the best pscore
• number of possible matched datasets grows exponentially

with N.
• matching can make balance worse for some covariates

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching (GenMatch)

Genetic matching is a new general method for performing
multivariate matching. GenMatch:
• algorithmically maximizes the balance of observed

potential confounders across matched treated and control
units

• uses the pscore (if one has one) and weights covariates so
that balance is maximized

• uses an evolutionary search algorithm to determine the
weight each covariate is given

• genetic algorithm developed by Sekhon and Mebane
(1998) is used.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching (GenMatch)

Genetic matching is a new general method for performing
multivariate matching. GenMatch:
• algorithmically maximizes the balance of observed

potential confounders across matched treated and control
units

• uses the pscore (if one has one) and weights covariates so
that balance is maximized

• uses an evolutionary search algorithm to determine the
weight each covariate is given

• genetic algorithm developed by Sekhon and Mebane
(1998) is used.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching (GenMatch)

Genetic matching is a new general method for performing
multivariate matching. GenMatch:
• algorithmically maximizes the balance of observed

potential confounders across matched treated and control
units

• uses the pscore (if one has one) and weights covariates so
that balance is maximized

• uses an evolutionary search algorithm to determine the
weight each covariate is given

• genetic algorithm developed by Sekhon and Mebane
(1998) is used.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Pscore Matching Example

library(Matching)
data(lalonde)

Y <- lalonde$re78 #the outcome of interest
Tr <- lalonde$treat #the treatment of interest

pscore model
glm1 <- glm(treat~age + educ + black +

hisp + married + nodegr + re74 + re75,
family=binomial, data=lalonde)

Matching
rr1 <- Match(Y=Y, Tr=Tr, X=glm1$fitted)

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

QQ Plot of Before and After Pscore Matching

●●
●●●
●●●●
●●
●●●●●●●
●
●
●●●●
●●
●●
●●
●●●●
●

●●
●●●
●
●●
●
●●

● ●●
● ●

●

●

●

●

0 10000 25000

0
50

00
15

00
0

25
00

0
35

00
0

Control Observations

T
re

at
m

en
t O

bs
er

va
tio

ns

Before Matching

●●
●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●
●●●●●●
●●
●●●●
●

●●
●●●●●●●●●●

●
●●
●●●●●●●● ●

●●

●●●
●●

●

●

●

●

0 10000 25000

0
50

00
15

00
0

25
00

0
35

00
0

Control Observations

After Matching

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

GenMatch Matching Example

X <- cbind(age, educ, black, hisp, married, nodegr,
re74, re75, u74, u75)

BalanceMatrix <- cbind(age, I(age^2), educ, I(educ^2),
black, hisp, married, nodegr, re74 ,
I(re74^2), re75, I(re75^2), u74, u75,
I(re74*re75), I(age*nodegr),
I(educ*re74), I(educ*re75))

gen1 <- GenMatch(Tr=Tr, X=X,
BalanceMatrix=BalanceMatrix)

mgen1 <- Match(Y=Y, Tr=Tr, X=X, Weight.matrix=gen1)

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

QQ Plot of Pscore and GenMatch

●●
●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●
●●●●●●
●●
●●●●
●

●●
●●●●●●●●●●

●
●●
●●●●●●●● ●

●●

●●●
●●

●

●

●

●

0 10000 25000

0
50

00
15

00
0

25
00

0
35

00
0

Control Observations

T
re

at
m

en
t O

bs
er

va
tio

ns

Pscore Matching

●●
●●●
●●●●
●●
●●●●●●●

●
●
●●●●
●●
●●
●●
●●●●
●

●●
●●●
●

●●
●
●●

●● ●
●●

●

●

●

●

0 10000 25000

0
50

00
15

00
0

25
00

0
35

00
0

Control Observations

GenMatch

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Properties of Matching Algorithms

• When can matching confounders make bias worse? e.g.,
what if the propensity score model is incorrect?

• All affinely invariant matching methods have the Equal
Percent Bias Reduction (EPBR) property under some
conditions.

• If X are distributed with ellipsoidal distributions, then the
EPBR property holds for affinely invariant matching
methods (Rubin and Thomas 1992).

• There is an extension to a restricted class of mixtures
(Rubin and Stuart 2006): discriminant mixtures of
proportional ellipsoidally symmetric distributions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Properties of Matching Algorithms

• When can matching confounders make bias worse? e.g.,
what if the propensity score model is incorrect?

• All affinely invariant matching methods have the Equal
Percent Bias Reduction (EPBR) property under some
conditions.

• If X are distributed with ellipsoidal distributions, then the
EPBR property holds for affinely invariant matching
methods (Rubin and Thomas 1992).

• There is an extension to a restricted class of mixtures
(Rubin and Stuart 2006): discriminant mixtures of
proportional ellipsoidally symmetric distributions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Properties of Matching Algorithms

• When can matching confounders make bias worse? e.g.,
what if the propensity score model is incorrect?

• All affinely invariant matching methods have the Equal
Percent Bias Reduction (EPBR) property under some
conditions.

• If X are distributed with ellipsoidal distributions, then the
EPBR property holds for affinely invariant matching
methods (Rubin and Thomas 1992).

• There is an extension to a restricted class of mixtures
(Rubin and Stuart 2006): discriminant mixtures of
proportional ellipsoidally symmetric distributions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Properties of Matching Algorithms

• When can matching confounders make bias worse? e.g.,
what if the propensity score model is incorrect?

• All affinely invariant matching methods have the Equal
Percent Bias Reduction (EPBR) property under some
conditions.

• If X are distributed with ellipsoidal distributions, then the
EPBR property holds for affinely invariant matching
methods (Rubin and Thomas 1992).

• There is an extension to a restricted class of mixtures
(Rubin and Stuart 2006): discriminant mixtures of
proportional ellipsoidally symmetric distributions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Equal Percent Bias Reduction (EPBR)

• Let Z be the expected value of X in the matched control
group. Then we say that a matching procedure is EPBR if

E(X |T = 1)− Z = γ {E(X |T = 1)− E(X |T = 0)}
for a scalar 0 ≤ γ ≤ 1.

• We say that a matching method is EPBR for X because
the percent reduction in the mean biases for each of the
matching variables is the same.

• In general, if a matching method is not EPBR, then the
bias for some linear function of X is increased.

• We may care about nonlinear functions of X .

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Equal Percent Bias Reduction (EPBR)

• Let Z be the expected value of X in the matched control
group. Then we say that a matching procedure is EPBR if

E(X |T = 1)− Z = γ {E(X |T = 1)− E(X |T = 0)}
for a scalar 0 ≤ γ ≤ 1.

• We say that a matching method is EPBR for X because
the percent reduction in the mean biases for each of the
matching variables is the same.

• In general, if a matching method is not EPBR, then the
bias for some linear function of X is increased.

• We may care about nonlinear functions of X .

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Equal Percent Bias Reduction (EPBR)

• Let Z be the expected value of X in the matched control
group. Then we say that a matching procedure is EPBR if

E(X |T = 1)− Z = γ {E(X |T = 1)− E(X |T = 0)}
for a scalar 0 ≤ γ ≤ 1.

• We say that a matching method is EPBR for X because
the percent reduction in the mean biases for each of the
matching variables is the same.

• In general, if a matching method is not EPBR, then the
bias for some linear function of X is increased.

• We may care about nonlinear functions of X .

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching Computationally Intensive

• Raessler and Rubin (2005) use GenMatch for a dataset
with over 2 million observations

• Political get-out-the-vote databases also have millions of
observations

• Marketing data has millions of observations and thousands
of covariates

• finding the best matches by brute force is a computational
problem whose time increases exponentially with N.
Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching Computationally Intensive

• Raessler and Rubin (2005) use GenMatch for a dataset
with over 2 million observations

• Political get-out-the-vote databases also have millions of
observations

• Marketing data has millions of observations and thousands
of covariates

• finding the best matches by brute force is a computational
problem whose time increases exponentially with N.
Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching Computationally Intensive

• Raessler and Rubin (2005) use GenMatch for a dataset
with over 2 million observations

• Political get-out-the-vote databases also have millions of
observations

• Marketing data has millions of observations and thousands
of covariates

• finding the best matches by brute force is a computational
problem whose time increases exponentially with N.
Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Matching Computationally Intensive

• Raessler and Rubin (2005) use GenMatch for a dataset
with over 2 million observations

• Political get-out-the-vote databases also have millions of
observations

• Marketing data has millions of observations and thousands
of covariates

• finding the best matches by brute force is a computational
problem whose time increases exponentially with N.
Traveling Salesman problem

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

To Optimize the Software

• Computationally intensive functions are written in C/C++
• Parallelize the outer loop and vectorize the inner loop
• Extensive use of BLAS and Lapack libraries
• The GenMatch function is parallelized, it can make use of

multiple CPUs or nodes via the snow package: simple
network of workstations

• Parallel execution is tricky: unexpected bottlenecks such
as a cache-bottleneck when executing SSE3 instructions
via BLAS

• Must pay attention to unexpected performance problems:
memory allocation (malloc) on OS X

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Using Multiple Computer Chips to Run GenMatch

1 CPU 2 CPUs 3 CPUs 4 CPUs

1780 Observations
run time (seconds) 2557 1372 950 749
x CPU/1 CPU run time 0.54 0.37 0.29

1335 Observations
run time (seconds) 826 475 317 255
x CPU/1 CPU run time 0.58 0.38 0.31

890 Observations
run time (seconds) 532 338 233 193
x CPU/1 CPU run time 0.64 0.44 0.36

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Using Multiple Computer Chips to Run GenMatch

1 CPU 2 CPUs 3 CPUs 4 CPUs

1780 Observations
run time (seconds) 2557 1372 950 749
x CPU/1 CPU run time 0.54 0.37 0.29

1335 Observations
run time (seconds) 826 475 317 255
x CPU/1 CPU run time 0.58 0.38 0.31

890 Observations
run time (seconds) 532 338 233 193
x CPU/1 CPU run time 0.64 0.44 0.36

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Using Multiple Computer Chips to Run GenMatch

1 CPU 2 CPUs 3 CPUs 4 CPUs

1780 Observations
run time (seconds) 2557 1372 950 749
x CPU/1 CPU run time 0.54 0.37 0.29

1335 Observations
run time (seconds) 826 475 317 255
x CPU/1 CPU run time 0.58 0.38 0.31

890 Observations
run time (seconds) 532 338 233 193
x CPU/1 CPU run time 0.64 0.44 0.36

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

• Matching had far worse performance on OS X, why?
• Memory allocation issue: malloc
• OS X malloc makes system call at 15KB while Linux does

at 256KB.
• On OS X, more page faults
• Rewrite functions to make fewer malloc calls (at the cost of

more memory usage). Apple’s OS X performance group
helped with this.

• Use Doug Lea’s malloc instead

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

Operating System and Chip

S
e

co
n

d
s

0
1

2
3

4
5

6
7

OS X standard malloc
OS X Lea's malloc
Linux

Genetic Matching (445 observations)
Shorter is Better

4.6
4.4 4.4

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

Operating System and Chip

S
e

co
n

d
s

0
5

1
0

1
5

2
0

2
5

OS X standard malloc
OS X Lea's malloc
Linux

Genetic Matching (890 observations)
Shorter is Better

20.1

18.3

16.5

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

The Joy of Malloc

Operating System and Chip

S
e

co
n

d
s

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

OS X standard malloc
OS X Lea's malloc
Linux

Genetic Matching (5240 observations)
Shorter is Better

2127

1432 1429

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Quantum Computing

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Until Quantum Computing

• Parallel computing and vectorization
• Block-algorithms: the Matchby function
• A wide variety of matching procedures are supported, and

in the future optmatch will be also
• Design issue for R:

• The malloc problem impacts BLAS performance
• Block-algorithms: R interface with SQL
• Software engineering support...offload this to Parrot/JAVA?
• Support to extend R internally is needed

• Software available at http://SEKHON.BERKELEY.EDU
and on CRAN

http://SEKHON.BERKELEY.EDU

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Mahalanobis Distance

• The most common method of multivariate matching is
based on the Mahalanobis distance. The Mahalanobis
distance measure between any two column vectors is
defined as:

md(Xi , Xj) =
{
(Xi − Xj)

′S−1(Xi − Xj)
} 1

2

where Xi and Xj are two different observations and S is
the sample covariance matrix of X .

• Mahalanobis distance is an appropriate distance measure
if each covariate has an elliptic distribution whose shape is
common between treatment and control groups (Mitchell
and Krzanowski 1985, 1989).

• In finite samples, Mahalanobis distance will not be optimal.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Mahalanobis Distance

• The most common method of multivariate matching is
based on the Mahalanobis distance. The Mahalanobis
distance measure between any two column vectors is
defined as:

md(Xi , Xj) =
{
(Xi − Xj)

′S−1(Xi − Xj)
} 1

2

where Xi and Xj are two different observations and S is
the sample covariance matrix of X .

• Mahalanobis distance is an appropriate distance measure
if each covariate has an elliptic distribution whose shape is
common between treatment and control groups (Mitchell
and Krzanowski 1985, 1989).

• In finite samples, Mahalanobis distance will not be optimal.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

More General Method of Measuring Distance

• A more general way to measure distance is defined by:

d(Xi , Xj) =
{

(Xi − Xj)
′ (S−1/2)′ WS−1/2(Xi − Xj)

} 1
2

where W is a k × k positive definite weight matrix and
S1/2 is the Cholesky decomposition of S which is the
variance-covariance matrix of X .

• All elements of W are zero except down the main diagonal.
The main diagonal consists of k parameters which must be
chosen.

• This leaves the problem of choosing the free elements of
W . For identification, there are only k − 1 free parameters.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

More General Method of Measuring Distance

• A more general way to measure distance is defined by:

d(Xi , Xj) =
{

(Xi − Xj)
′ (S−1/2)′ WS−1/2(Xi − Xj)

} 1
2

where W is a k × k positive definite weight matrix and
S1/2 is the Cholesky decomposition of S which is the
variance-covariance matrix of X .

• All elements of W are zero except down the main diagonal.
The main diagonal consists of k parameters which must be
chosen.

• This leaves the problem of choosing the free elements of
W . For identification, there are only k − 1 free parameters.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25

50
0

10
00

15
00

20
00

25
00

Dehejia Wahba Sample

Lowest p−value (KS & paired t−tests)

E
st

im
at

ed
 A

ve
ra

ge
 T

re
at

m
en

tt
E

ffe
ct

 fo
r

T
re

at
ed

 (
$)

●

●

●

●

●

● ●●●●● ●●
●

●
●

●●

●

● ●
●

● ●● ●●● ●●

●

●

●●
●

●●●
●● ●

●●

●

●

●
●●

●
●

●●
●

●●

●

●●
●

●

●●●● ●

●

●

●

●
●●

●

●

●

● ●● ●●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

● ● ●
●

● ●
●

●

●

●
●

● ●
●

●

●●●
●

●

● ●●

●

●●●●●
●

● ●●

●

●●

●

●●●

●

●●●● ●
●

●

●
●

●

●

●●●

●

●
●● ●●●●● ●●

●

●

●
●

●

●

●● ●

●

● ●

●

●
●

●

●
●●●●●●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

● ●

●

●
●

●

●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Experimental benchmark estimate ($1794)

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Parameterization

• GenMatch uses the propensity score if it is known or if it
can be estimated.

• The propensity score is estimated and its linear predictor,
µ̂, is matched upon along with the covariates X once they
have been adjusted so as to be uncorrelated with the linear
predictor.

• Combining is good because:
• Propensity score matching is good at minimizing the

discrepancy along the propensity score
• Mahalanobis distance is good at minimizing the distance

between individual coordinates of X (orthogonal to the
propensity score) (Rosenbaum and Rubin 1985).

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Parameterization

• GenMatch uses the propensity score if it is known or if it
can be estimated.

• The propensity score is estimated and its linear predictor,
µ̂, is matched upon along with the covariates X once they
have been adjusted so as to be uncorrelated with the linear
predictor.

• Combining is good because:
• Propensity score matching is good at minimizing the

discrepancy along the propensity score
• Mahalanobis distance is good at minimizing the distance

between individual coordinates of X (orthogonal to the
propensity score) (Rosenbaum and Rubin 1985).

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Parameterization

• GenMatch uses the propensity score if it is known or if it
can be estimated.

• The propensity score is estimated and its linear predictor,
µ̂, is matched upon along with the covariates X once they
have been adjusted so as to be uncorrelated with the linear
predictor.

• Combining is good because:
• Propensity score matching is good at minimizing the

discrepancy along the propensity score
• Mahalanobis distance is good at minimizing the distance

between individual coordinates of X (orthogonal to the
propensity score) (Rosenbaum and Rubin 1985).

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Optimization

• Many loss functions are possible. Such as:
• minimize the largest discrepancy
• minimize the mean or median discrepancy
• minimize some other quantile
• restrict the above to only uniformly improving moves

• By default, the algorithm attempts to minimize the largest
discrepancy at every step (minimizing the infinity norm).

• For a given set of matches resulting from a given W , the
loss is defined as the maximum of the cumulative
probability distribution functions of a variety of
standardized statistics—i.e., the minimum “p-value”
observed across a series of balance “tests.”

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measuring Balance

• There are many different ways of measuring balance and I
cannot summarize the vast literature here.

• The choice of balance statistics will be domain specific.
E.g., use randomization inference if you can as Bowers
and Hansen (2005) do.

• But the measures should be sensitive to different
departures from balance.

• It is important the maximum discrepancy be small.
“p-values” conventionally understood to signal balance
(e.g., 0.10) are often too low to produce reliable estimates.

• the p-values from these balance “tests” cannot be
interpreted as true probabilities

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measuring Balance

• There are many different ways of measuring balance and I
cannot summarize the vast literature here.

• The choice of balance statistics will be domain specific.
E.g., use randomization inference if you can as Bowers
and Hansen (2005) do.

• But the measures should be sensitive to different
departures from balance.

• It is important the maximum discrepancy be small.
“p-values” conventionally understood to signal balance
(e.g., 0.10) are often too low to produce reliable estimates.

• the p-values from these balance “tests” cannot be
interpreted as true probabilities

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measures of Balance

• Algorithm uses cumulative probability distribution functions
of a variety of standardized statistics which are often
thought to be test statistics

• Formal hypothesis tests of balance should not be
conducted because no measure of balance is a monotonic
function of bias and because balance should be optimized
without limit.

• However, descriptive measures of discrepancy ignore
information related to bias

• By default, t-tests for the difference of means and
nonparametric bootstrap Kolmogorov-Smirnov
distributional test statistics are used.

• The analyst may use any measures she desires—e.g.,
additional nonlinear functions and higher order
interactions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measures of Balance

• Algorithm uses cumulative probability distribution functions
of a variety of standardized statistics which are often
thought to be test statistics

• Formal hypothesis tests of balance should not be
conducted because no measure of balance is a monotonic
function of bias and because balance should be optimized
without limit.

• However, descriptive measures of discrepancy ignore
information related to bias

• By default, t-tests for the difference of means and
nonparametric bootstrap Kolmogorov-Smirnov
distributional test statistics are used.

• The analyst may use any measures she desires—e.g.,
additional nonlinear functions and higher order
interactions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measures of Balance

• Algorithm uses cumulative probability distribution functions
of a variety of standardized statistics which are often
thought to be test statistics

• Formal hypothesis tests of balance should not be
conducted because no measure of balance is a monotonic
function of bias and because balance should be optimized
without limit.

• However, descriptive measures of discrepancy ignore
information related to bias

• By default, t-tests for the difference of means and
nonparametric bootstrap Kolmogorov-Smirnov
distributional test statistics are used.

• The analyst may use any measures she desires—e.g.,
additional nonlinear functions and higher order
interactions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Measures of Balance

• Algorithm uses cumulative probability distribution functions
of a variety of standardized statistics which are often
thought to be test statistics

• Formal hypothesis tests of balance should not be
conducted because no measure of balance is a monotonic
function of bias and because balance should be optimized
without limit.

• However, descriptive measures of discrepancy ignore
information related to bias

• By default, t-tests for the difference of means and
nonparametric bootstrap Kolmogorov-Smirnov
distributional test statistics are used.

• The analyst may use any measures she desires—e.g.,
additional nonlinear functions and higher order
interactions.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Optimization

• The optimization problem described above is difficult and
irregular, and we utilize an evolutionary algorithm
developed by Sekhon and Mebane (1998) called
GENOUD.

• Theorems in support of GAs are based on interpreting
them as finite and irreducible Markov chains.

• Random search also works better than the usual matching
methods, but is less efficient than GENOUD.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Genetic Optimization

• The optimization problem described above is difficult and
irregular, and we utilize an evolutionary algorithm
developed by Sekhon and Mebane (1998) called
GENOUD.

• Theorems in support of GAs are based on interpreting
them as finite and irreducible Markov chains.

• Random search also works better than the usual matching
methods, but is less efficient than GENOUD.

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Issues with R

• The malloc problem effects system BLAS performance
• I could not link R against Dough Lea’s malloc (dmalloc)

stably
• But dmalloc is used in the Windows port (by B. Ripley)
• But Windows is a different tree!
• I compile Matching against dmalloc
• A better way to extend R is needed

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Issues with R

• The malloc problem effects system BLAS performance
• I could not link R against Dough Lea’s malloc (dmalloc)

stably
• But dmalloc is used in the Windows port (by B. Ripley)
• But Windows is a different tree!
• I compile Matching against dmalloc
• A better way to extend R is needed

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Issues with R

• The malloc problem effects system BLAS performance
• I could not link R against Dough Lea’s malloc (dmalloc)

stably
• But dmalloc is used in the Windows port (by B. Ripley)
• But Windows is a different tree!
• I compile Matching against dmalloc
• A better way to extend R is needed

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Issues with R

• The malloc problem effects system BLAS performance
• I could not link R against Dough Lea’s malloc (dmalloc)

stably
• But dmalloc is used in the Windows port (by B. Ripley)
• But Windows is a different tree!
• I compile Matching against dmalloc
• A better way to extend R is needed

The Future GenMatch Parallel Algorithms The Joy of Malloc Future References

Bowers, Jake and Ben Hansen. 2005. “Attributing Effects to A
Cluster Randomized Get-Out-The-Vote Campaign.” Technical
Report #448, Statistics Department, University of Michigan.
http://www-personal.umich.edu/~jwbowers/
PAPERS/bowershansen2006-10TechReport.pdf.

Mitchell, Ann F. S. and Wojtek J. Krzanowski. 1985. “The
Mahalanobis Distance and Elliptic Distributions.” Biometrika
72 (2): 464–467.

Mitchell, Ann F. S. and Wojtek J. Krzanowski. 1989.
“Amendments and Corrections: The Mahalanobis Distance
and Elliptic Distributions.” Biometrika 76 (2): 407.

Raessler, S. and D. B. Rubin. 2005. “Complications when using
nonrandomized job training data to draw causal inferences.”
Proceedings of the International Statistical Institute.

Rosenbaum, Paul R. and Donald B. Rubin. 1985. “Constructing
a Control Group Using Multivariate Matched Sampling
Methods That Incorporate the Propensity Score.” The
American Statistician 39 (1): 33–38.

Rubin, Donald B. and Elizabeth A. Stuart. 2006. “Affinely
Invariant Matching Methods with Discriminant Mixtures of
Proportional Ellipsoidally Symmetric Distributions.” Annals of
Statistics. In Press.

Rubin, Donald B. and Neal Thomas. 1992. “Affinely Invariant
Matching Methods with Ellipsoidal Distributions.” Annals of
Statistics 20 (2): 1079–1093.

Sekhon, Jasjeet Singh and Walter R. Mebane, Jr. 1998.
“Genetic Optimization Using Derivatives: Theory and
Application to Nonlinear Models.” Political Analysis 7:
189–203.

http://www-personal.umich.edu/~jwbowers/PAPERS/bowershansen2006-10TechReport.pdf
http://www-personal.umich.edu/~jwbowers/PAPERS/bowershansen2006-10TechReport.pdf

	The Future
	GenMatch
	Parallel Algorithms
	The Joy of Malloc
	Future
	References

