Functional Data Analysis in Matlab and R

James Ramsay, Professor, McGill U., Montreal Hadley Wickham, Grad student, Iowa State, Ames, IA Spencer Graves, Statistician, PDF Solutions, San José, CA

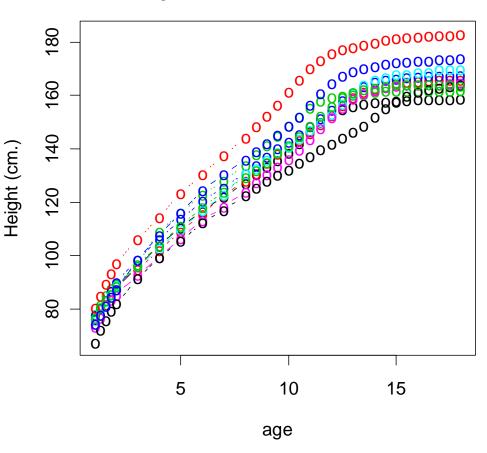
Outline

- What is Functional Data Analysis?
- FDA and Differential Equations
- Examples:
 - Squid Neurons
 - Continuously Stirred Tank Reactor (CSTR)
- Conclusions
- References

What is FDA?

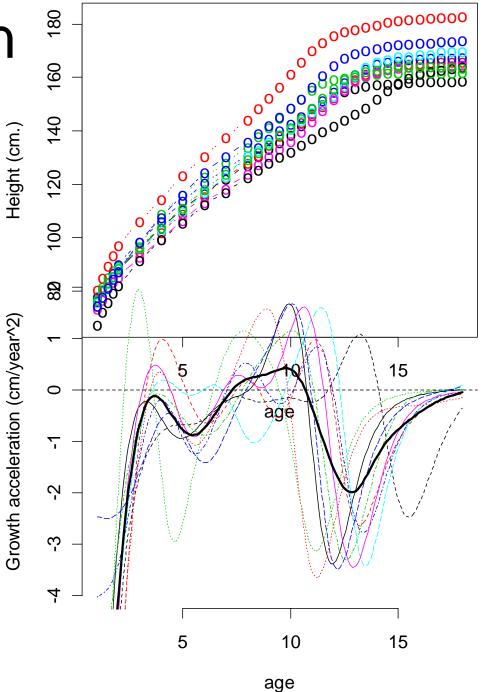
- Functional data analysis is a collection of techniques to model data from dynamic systems
 - possibly governed by differential equations
 - in terms of some set of basis functions
- The 'fda' package supports the use of 8 different types of basis functions: constant, monomial, polynomial, polygonal, B-splines, power, exponential, and Fourier.

Observations of different lengths

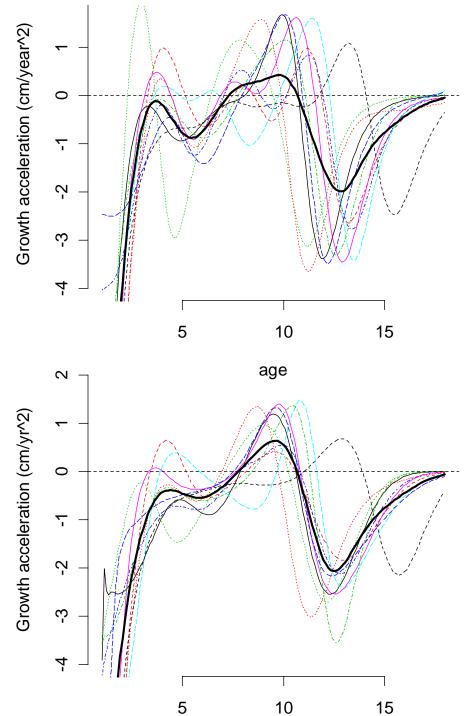

- Observation vectors of different lengths can be mapped to coordinates of a fixed basis set
- All examples in the 'fda' package have the same numbers of observations
- No conceptual obstacles to handling observation vectors of different lengths

Time Warping

- "start" and "stop" are sometimes determined by certain transitions
- Example: growth spurts in the life cycle of various species do not occur at exactly the same ages in different individuals (even within the same species)


10 Girls: Berkeley Growth Study

 Tuddenham, R. D., and Snyder, M. M. (1954) "Physical growth of California boys and girls from birth to age 18", _University of California Publications in Child Development_, 1, 183-364.


Acceleration

- Growth spurts occur at different ages
- Average shows the basic trend, but features are damped by improper registration

Registration register.fd all to the mean Not perfect,

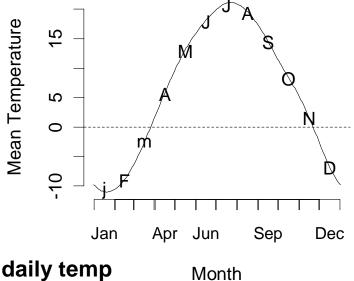
- Not perfect, but better

A Stroll Along the Beach

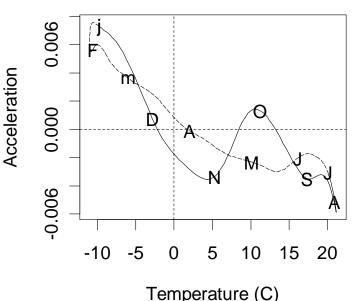
- Light intensity over 365 days at each of 190*143 = 27140 pixels was
 - smoothed
 - functional principal components

 http://www.stat.berkeley.edu/~wickham/us erposter.pdf

Other fda capabilities


Correlations

even with series of different lengths!


Phase plane plots

goodestimates ofderivatives

Montreal average daily temp deviation from average (C)

Montreal average daily temp deviation from average (C)

afda-ch03.R fda-ch01.R fda-ch02.R

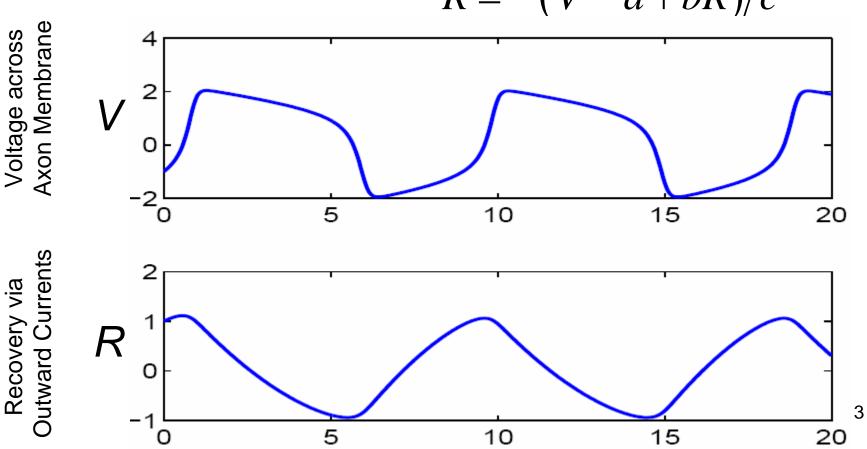
Script files for fda books

- Ramsay and Silverman
 - (2002) Applied Functional Data Analysis (Springer)
 - (2006) Functional Data Analysis, 2nd ed.(Springer)
- ~R\library\fda\scripts
 - Some but not all data sets discussed in the books are in the 'fda' package
 - Script files are available to reproduce some but not all of the analyses in the books.
 - plus CSTR demo

FDA and Differential Equations

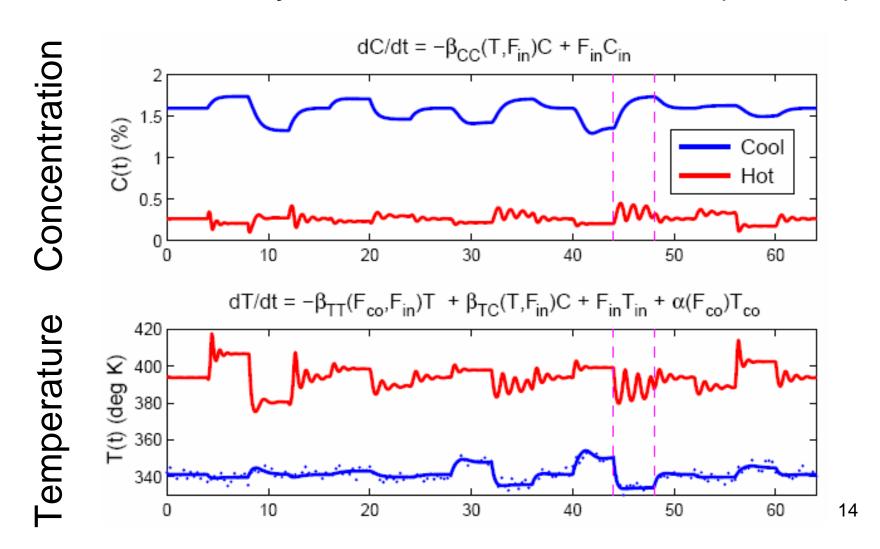
 Many dynamic systems are believed to follow processes where output changes are a function of the outputs, x, and inputs, u (and unknown parameters θ):

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, \mathbf{u}, t \mid \mathbf{\theta}), \ t \in [0, T]$$


Matlab was designed in part for these types of models

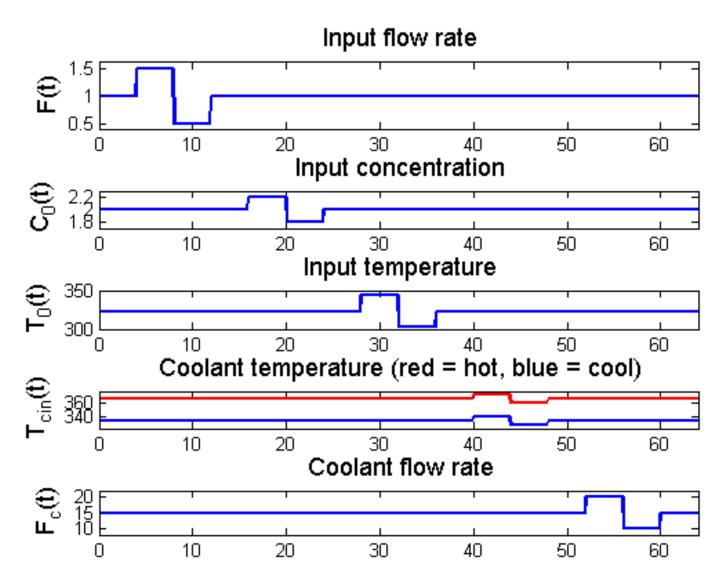
Squid Neurons

• FitzHugh (1961) - Nagumo et al. (1962) Equations: Estimate a, b and c in: $\frac{1}{12}$ [$\frac{1}{12}$ ($\frac{1}{12}$) $\frac{1}{12}$]


$$\dot{V} = c \left[V - \left(V^3 / 3 \right) + R \right]$$

$$\dot{R} = -\left(V - a + bR \right) / c$$

Tank Reactions


Continuously Stirred Tank Reactor (CSTR)

Functional Data Analysis Process

- 1. Select Basis Set
- 2. Select Smoothing Operator
 - e.g., differential equation
 - equivalent to a Bayesian prior over coefficients to estimate
- 3. Estimate coefficients to optimize some objective function
- 4. Model criticism, residual plots, etc.
- 5. Hypothesis testing

Inputs to Tank Reaction Simulation



Computations: Nonlinear ODE

$$\begin{split} dC/dt &= -\beta_{CC}(T, F_{\rm in})C + F_{\rm in}C_{\rm in} \\ dT/dt &= -\beta_{TT}(F_{\rm co}, F_{\rm in})T + \beta_{TC}(T, F_{\rm in})C + F_{\rm in}T_{\rm in} + \alpha(F_{\rm co})T_{\rm co} \\ \beta_{CC}(T, F_{\rm in}) &= \kappa \exp\left\{-10^4 \tau (1/T - 1/T_{\rm ref})\right\} + F_{\rm in} \\ \beta_{TT}(F_{\rm co}, F_{\rm in}) &= \alpha(F_{\rm co}) + F_{\rm in} \\ \beta_{TC}(T, F_{\rm in}) &= 130\beta_{CC}(T, F_{\rm in}) \\ \alpha(F_{\rm co}) &= aF_{\rm co}^{b+1}/(F_{\rm co} + aF_{\rm co}^{b}/2) \end{split} \qquad \begin{array}{c} \text{estimate} \\ \text{parameters} \\ (\kappa, \tau, a, b) \\ \end{array}$$

4 parameters: κ, τ, a, b

- Compute Input vectors
- Define functions
- Call differential equation solver
- Summarize, plot

Three problems

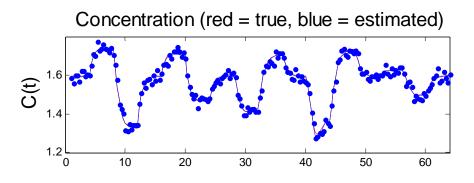
• Estimate (κ , τ , a, b) to minimize SSE in Temperature only

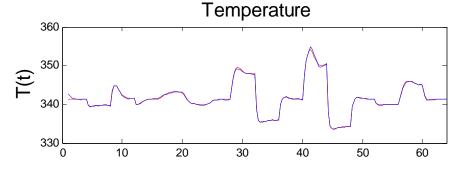
	functio	n	SSE	SSE-min
Matlab	Isqnonlin		5.09888	0.00236
R	nls		5.09652	0
	optim	Nelder-Mead	5.09652	0
		BFGS	5.09652	0
		CG	5.09900	0.00248
		SANN	5.17504	0.07852
	nlmink)	5.09652	0

SSE(Temp, Conc)

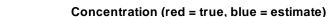
Median absolute relative error

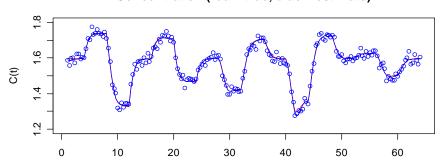
Matlab

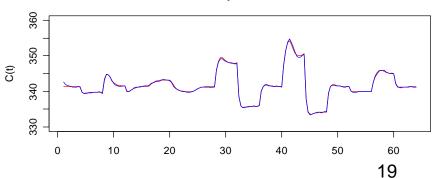

Concentration Temperature


1.149E-03 1.145E-03

R


2.640E-04 2.636E-04


Matlab: Isqnonlin



R: nls

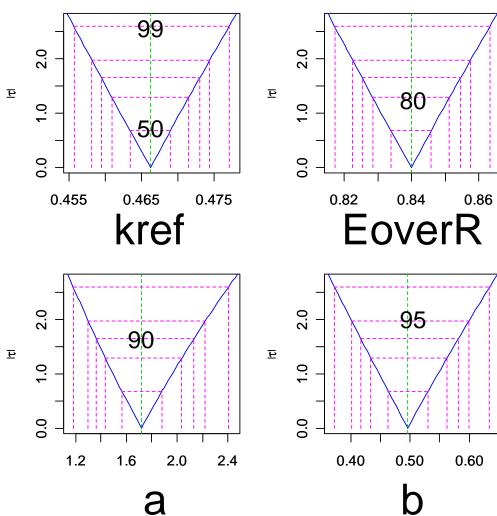
Temperature

R vs. Matlab

- Gave comparable answers
- R code for CSTR slightly more accurate but requires much more compute time
 - coded by different people
- R has helper functions not so easily replicated in Matlab
 - summary.nls →
 - confint.nls
 - profile.nls

```
Estimate StdErr t Pr(>|t|)
kref 0.466 0.004 113.0 < 2e-16 ***
EoverR 0.840 0.009 94.7 < 2e-16 ***
a 1.720 0.232 7.4 8.2e-13 ***
b 0.496 0.050 10.0 < 2e-16 ***
```

confint.nls


- Likelihood-based confidence intervals: generally more accurate than Wald intervals
 - Wald subject to parameter effects curvature
 - Likelihood: only affected by intrinsic curvature

> confintNIsFit

	2.5%	97.5%
kref	0.458	0.474
EoverR	0.823	0.858
a	1.300	2.222
b	0.401	0.599

plot.profile.nls

 for a plot showing the sqrt(log(LR))

Conclusions

- R and Matlab give comparable answers
- R:nls has helper functions absent from Matlab:lsqnonlin
- Functional data analysis tools are key for
 - estimating derivatives and
 - working with differential operators

References

- www.functionaldata.org
- Ramsay and Silverman (2006) Functional Data Analysis, 2nd ed. (Springer)
- ____(2002) Applied Functional Data Analysis (Springer)
- Ramsay, J. O., Hooker, G., Cao, J. and Campbell, D. (2007) Parameter estimation for differential equations: A generalized smoothing approach (with discussion). *Journal of the Royal* Statistical Society, Series B. To appear.

NOT free-knot splines

- For this, see
 - DierckxSpline package
 - Companion to Dierckx, P. (1993). Curve and Surface Fitting with Splines. Oxford Science Publications, New York.
- R package by Sundar Dorai-Raj
 - links to Fortran code by Dierckx available from www.netlib.org/dierckx
- soon to appear on CRAN