
RGL in 2007

Duncan Murdoch

University of Western Ontario

Daniel Adler

University of Goettingen

May 11 2007

Abstract

In this paper we describe changes to the RGL package.

1 Introduction

Murdoch (2001) presented a 3D graphics package for R at DSC 2001. This
package used the OpenGL library to render shaded polygons, lines and points
in dynamic displays. Unfortunately, it was written in Delphi, a Pascal variant
which at the time existed only on Microsoft Windows. Independently, Adler
(2003) developed a package with the same overall goals, also using OpenGL,
but coded more portably in C++. He and his supervisors presented this at
the DSC 2003 meeting and at Interface 2003 (Nenadic et al., 2003), and he
later won the John M. Chambers Statistical Software Award for 2003 for
the work. At the DSC 2003 meeting the present authors met and decided
to merge their work into a single package, keeping the name rgl, based on
Adler’s work. Murdoch’s package was renamed to djmrgl.

RGL is an interface to the OpenGL library. We refer the reader to the
references above and the manuals (OpenGL Architecture Review Board et al.,
2005) for a discussion of OpenGL. In this paper we will concentrate on the
changes to the Adler (2003) package that have occurred since the projects
were merged.

1



Figure 1: The plot3d() function with type="s" for spheres.

2 *3d interface

During the fusion of djmrgl and rgl, the API was extended with a generic
3D API. The functions in this API are named in the pattern *3d. The
idea behind the new API is to establish a generic 3D API that is stable
to the R user, while at the same time, it will be open to developers to
implement different 3D devices such as Scene dataformat generators and
more implementations or bindings to existings 3D engines. While the legacy
rgl.* functions are still available, the use of the generic 3D interface is
encouraged.

The semantics of the *3d interface are similar to those of classic R graph-
ics. Changes made to material properties in *3d calls remain local to those
calls, and the new material3d() function allows individual material defaults
to be set (similar to the par() function).

Higher level *3d functions were also added analogously to the classic plot
functions: plot3d(), axes3d(), etc. See Figure 1. Lower level functions to
add objects to plots were also added: points3d(), lines3d(), and so on.

By default, the plot3d() function rescales coordinates so that the bound-
ing box around the scene appears to be a cube. More general control of the
aspect ratio is also possible with the aspect3d() function.

2



Figure 2: A square with a mipmapped texture, at the original size, and
magnified 10 and 100 times.

3 Rendering Improvements

In computer graphics, “textures” are images mapped onto surfaces. The
images may appear as though printed there, or may modify other properties
of the surface.

Mapping textures on surfaces is difficult. If the surface normals are nearly
orthogonal towards the view direction, poor quality texture mapping effects
can appear. There are also difficult problems involved in rescaling the images
as the rendered size of the image is changed in real time by the user.

Mipmapping is an advanced technique in texture mapping that uses mul-
tiple pre-computed scaled down versions of the same texture image in the
texture sampling process. These speed up high quality rendering.

In rgl, mipmapping can be enabled by the material parameter texmipmap.
Additionally texminfilter and texmagfilter material parameters specify
the filtering method for rescaling. The best quality for shrinking an image
is achieved using texminfilter="linear.mipmap.linear", which uses lin-
ear interpolation between pixels within two rescaling levels, and then linear
interpolation between them to select the texture value (Figure 2). For ex-
panding the image, the best quality is achieved by texmagfilter="linear",
to use linear interpolation between pixels in the original image. Other possi-
bilities are to replace the linear interpolation with the selection of the nearest
pixel or magnification level; these are usually faster, but show more rendering
artefacts.

3



Figure 3: A “solid gold” rendering of the Maunga Whau volcano.

Textures can also be used via “environment mapping” to render a surface
so that it appears to be a perfectly reflective mirror. Typically, a panorama
image (e.g. the same image as for the scene background spheres) is chosen
as the texture image, but any image with a good mix of light and dark detail
works quite well. The image is wrapped on a virtual sphere surrounding the
shape. The texture coordinates for the shape’s surfaces are then calculated
using the viewpoint and surface normals to choose the reflection on the virtual
sphere. As this texture mapping process is highly dependent on the view
direction, the user gets the illusion of a perfect mirror (Figure 3). When
synchronizing the texture of the background sphere and the environmental
map of some objects an illusion of perfect mirroring can be achieved. In
rgl this feature can be enabled by setting the logical material parameter
texenvmap.

Besides better support for rendering of textures, rgl has recently gained
more general support for linking them to user scenes. Users can now give
texture coordinates corresponding to each vertex of polygons being rendered,
in order to show effects such as repeated textures (Figure 2) or transforma-
tions from rectangular coordinates to spherical ones (Figure 4). Similarly,
users can specify the normals to the surface: this allows the two edges of the
map in Figure 4 to be joined without a visible edge.

OpenGL allows solid surfaces to be rendered in any order, and based
on their apparent depth in the screen (their “z-order”) it will only display
those that are closer to the viewer, giving automatic hidden surface removal.
However, transparent surfaces must be handled with more care, as they must

4



Figure 4: A rendering of the mapdata package worldHires map on a globe.

Figure 5: 3D contours produced by the misc3d package and rendered in rgl.

be blended on top of each other in z-order (i.e. more distant surfaces must
be rendered first). rgl has much improved transparency handling. It renders
transparent objects (each corresponding to a single rgl.* call) in the correct
z-order relative to each other, and the internal components of each object
are rendered in the correct z-order.

Artefacts are still possible when multiple intersecting transparent objects
occur in the same scene because rgl does not interleave the rendering of
the internal components of different objects. If a user wants to render such
shapes (e.g. Figure 5), then all of the surfaces should be pre-computed and
rendered as one object.

5



4 Other changes

Besides the major changes listed above, rgl has had a number of smaller
additions and changes:

• There is now support for working with homogeneous matrices, used
in perspective calculations, and to specify rotations, translations and
scaling of geometric objects.

• Mouse handling is more flexible, with a number of optional behaviours
configurably associated with each mouse button: trackball rotation,
one-axis rotation, etc.

• There is basic low level support for item selection using select3d().

• Adler’s original implementation of rgl maintained objects on a stack,
and provided the rgl.pop() function to delete the most-recently drawn
object. Murdoch’s implementation implemented a hierarchical organi-
zation of objects, whose contents could be modified from R. The current
rgl falls somewhere between these: objects are maintained on a stack,
but each primitive has a numerical identifier, and rgl.pop() can delete
by identifier.

• In Windows, rgl now displays its windows within the MDI frame if R
is running in MDI mode.

• Missing values encoded as NA are now handled reasonably well.

• A major effort has been put into making rgl as portable as R across
platforms. This has been done by using the GNU build tools (autoconf,
etc.) to help write configure scripts. MacOSX presented a particular
challenge: depending whether R is run in the GUI or not, completely
different graphics systems are used, and rgl needs to link against two
different libraries implementing OpenGL. On that platform we cur-
rently build two separate shared libraries, and decide at package load
time which one to load.

• The rgl.snapshot and rgl.postscript functions have been improved,
so that images can now be saved to disk reasonably reliably.

6



5 What is still to come

Currently font support in rgl is very limited. Text can only be displayed on
one font and one size. Work is under way to use FTGL (a cross-platform font
support library for OpenGL); anyone interested in helping with this is asked
to contact us. We hope that this effort will also allow full Unicode support
to be achieved.

We are also planning in the future to allow better control of the layout
of rgl scenes within windows, and of those windows on screen.

• R3D specification

References

Adler, D. (2003). Interactive Visualization of Multi-Dimensional Data in R

Using OpenGL. Diplomarbeit, University of Goettingen.

Murdoch, D. J. (2001). RGL: An R interface to OpenGL. In Hornik, K.
and Leisch, F., editors, Proceedings of the 2nd International Workshop on

Distributed Statistical Computing, Vienna, March 2001. ISSN 1609-395X,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings.

Nenadic, O., Adler, D., and Zucchini, W. (2003). RGL: A R-library
for 3D visualization with OpenGL. In Computing Science and

Statistics, Proceedings of the 35th Symposium on the Interface.
http://www.galaxy.gmu.edu/interface/I03/I2003HTML/AdlerDaniel.html.

OpenGL Architecture Review Board, Shreiner, D., Woo, M., Neider, J., and
Davis, T. (2005). OpenGL Programming Guide: The Official Guide to

Learning OpenGL, Version 2. Addison-Wesley Professional.

7


