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[ Introduction ]

TIMP is a package for fitting superposition models that has been applied to measurements

arising in

• time (and/or temperature, polarization, pH)-resolved spectroscopy

• fluorescence lifetime imaging microscopy (FLIM)



[ Introduction ]

superposition of below-surface, on-surface, and above-surface states resolved with respect to

location (say, pixel number):

in general, measurement may be with respect to many independent variables



[ Introduction ]

In many experiments (e.g., those in spectroscopy, fluorescent lifetime image measurement, mass

spectrometry), the measurement also can be described by a superposition of the contribution of

states in 2 or more independent variables

basic equation for 2-way data representing ncomp components:
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[ Introduction ]

often can postulate a parametric model for the measurement with respect to a subset of the

independent variables, e.g., for 2-way data
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Ψ = CET

= C(θ)ET

for 2-component C, where Ψ represents timepoints t1, t2, . . . , tx, an example model with

θ = {θ1, θ2}:
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[ Variable projection ]

bilinear form of model Ψ = C(θ)ET allows solving for least-squares estimates of E given

estimates for θ as

E = (C(θ)TC(θ))−1C(θ)T Ψ = C(θ)+Ψ

the estimation problem is then

Minimize ‖ vec(I − C(θ)C(θ)+)Ψ) ‖2

reducing dimension of nonlinear parameter space to just length(θ)

(as opposed to length(θ) + (dim(E)[1] * dim(E)[2]) if solving for the entries of E as

nonlinear parameters)



[ Parameter estimation problem ]

TIMP fits separable nonlinear models

given

• the number of contributing components

• a parametric model for each component with respect to subset of independent variables

obtain

• estimates for nonlinear parameters

• the evolution of components with respect to the independent variables lacking a parametric

model solved for as conditionally linear parameters



[ Variable projection ]

the core of variable projection:

iteratively move θ̂ in a direction determined by approximating d(I−C(θ)C+(θ))
dθ

Ψ

Available approximations:

• Golub-Pereyra exact analytical solution based on dC+

dθ

• Kaufman approximation of analytical solution

• finite-difference based approximation

The nls function contains a variable projection algorithm

• uses Golub-Pereyra solution

• accessible via the option algorithm="plinear"

Golub, G.H., Pereyra, V. (1973), The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate,

SIAM J. Num. Anal., 10, 413-432.

Kaufman, L. (1975), A variable projection method for solving separable nonlinear least squares problems, BIT, 15, 49-57.



[ Partitioned variable projection ]

many models for C vary in the other independent variables with which the data are resolved . . .

in the 2-way case where E is n× nncomp, there are often n different models for C

recalling vec(XY Z) = (ZT ⊗X)vec(Y ), where ⊗ is the Kronecker product,

model for Ψ is:

vec(Ψ) = vec(CsuperE
T
superIn) = (In ⊗ Csuper)vec(E

T
super)

where

In ⊗ Csuper =
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Forming In ⊗ Csuper requires large memory resources



[ Partitioned variable projection ]

Solution via partitioning:

1. get the residual vec(I − C(θ)C(θ)+)ψp for each of the n models for C

2. concatenate these residual pieces and minimize the result with respect to θ . . .

Resulting residual is the same as via standard variable projection implementation, but without

the need to store and manipulate large matrices

partitioned variable projection allows application of variable projection method to modeling

• datasets resolved with respect to many independent variables

• many datasets simultaneously

without large memory resources

TIMP implements partitioned variable projection

Mullen KM, van Stokkum IHM (2007), TIMP: an R package for modeling multi-way spectroscopic measurements, Journal of Statistical

Software, 18(3).



[ Error estimation for separable nonlinear models ]

have model

vec(Ψ) = vec(CET In) = (In ⊗ C)vec(ET )

where n is the number of conditionally linear parameters.

Jacobian of the model function is

J =
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the linear approximation covariance matrix of both intrinsically nonlinear and conditionally

linear parameters is then

cov
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

 = σ̂2(JTJ)−1

with σ̂2 = SSE(θ̂)/df .

but need a lot of memory to get standard error estimates this way



[ Error estimation for separable nonlinear models ]

can also get standard error estimates in a partitioned manner

get standard error estimates for the nonlinear parameters θ, where J is Jacobian of partitioned

model function, as

cov
([

θ
])

= σ̂2(JTJ)−1

and standard error estimates for the conditionally linear parameters as

cov(ǫp) = σ2(C+
p C

+T

p ) +Gcov(θ)GT

= σ2(R−1
p R−T

p ) +GR−1
J R−T

J GT

where G consists of columns C+ dCp

dθi
ǫp, Rp results from the QR decomposition of C, and RJ

results from the QR decomposition of J .

Ivo H. M. van Stokkum (2005), Global and target analysis of time-resolved spectra, lecture notes for the troisième cycle de la physique en

suisse romande. Technical report.



[ New TIMP options: facilitating multidataset model specification ]

• the model for each dataset results in a residual vector

• concatenating these residual vectors results in a residual vector for a multidataset model

• multidataset models fit by minimizing total residual vector with respect to all parameters

• parameters may be used in the model for multiple datasets or to scale the residuals of a

single dataset

}

ΘΨ1

ΘΨ2

ΘL

= {Θ

multidataset model specification in TIMP:

• previously based on a single model and specification of per-dataset differences

• now also can also map each dataset to a (possibly) separate model



[ Case study on GFP ]

green fluorescent protein (GFP):

• widely used biomarker

• studied in our group via ultrafast visible/mid-infrared pump-probe spectroscopy

• detailed kinetic model for fluorescence decay sheds light on proton transfer pathway

van Wilderen LJGW, van Stokkum IHM, Mullen KM, Arents JC, Kennis JTM, Hellingwerf KJ, van Grondelle R, Groot ML (2007). “The

pathway for proton transfer in Green Fluorescent Protein”. Submitted.



[ Case study on GFP ]
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A compartmental model for the kinetics of GFP

• structure describes kinetics in both H2O and D2O buffers

• θP and the kinetic rates θ1 − θ8 estimated separately for the group of datasets representing

each buffer

• θB estimated using all datasets



[ Case study on GFP ]

kinetic rates branching θB θP IRF

39 H2O datasets 8
1

7 20

40 D2O datasets 8 7 20

θP and IRF parameters are estimated separately for datasets in different wavenumber ranges

total number of

• nonlinear parameters: 71

• datapoints: 282,000



[ Case study on GFP ]

spectra for the H2O and D2O datasets estimated as conditionally linear parameters, with

standard error bars:
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The two sets of spectra represent a total of 2091 conditionally linear parameters.



[ Case study on GFP ]

new options for multidataset model specification in TIMP make it easy to:

• specify a model

• assign H2O datasets to copy 1 of the model

• assign D2O datasets to copy 2 of the model

• link the parameter θB between all datasets

• fit model parameters to all 79 datasets simultaneously

validate results using

• knowledge of physically plausible parameter values

• standard error estimates for nonlinear and conditionally linear parameters

• SVD of residuals



[ Conclusions and outlook ]

• package TIMP fits superposition models

• includes new options to

– estimate standard errors of conditionally linear parameters

– facilitate specification of models for multiple datasets

• package used to perform elaborate case studies, e.g., on GFP measurements

outlook:

• develop options for (largely) automated model-based analysis of mass spectrometry data

• develop java-based GUI

obtain TIMP from:

• R-Forge: https://r-forge.r-project.org/projects/timp/

• CRAN: http://cran.r-project.org/src/contrib/Descriptions/TIMP.html
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