Sparse Matrices for Large Data Modeling

Martin Maechler

ETH Zurich
Switzerland
maechler@R-project.org
useR!2007, Ames, lowa, USA
Aug 92007

Overview

- Large Data - not just sparse matrices
- (Sparse) Matrices for Large Data : Applications
- LMER - talk by Doug Bates
* Quantile Smoothing with Constraints
- Regression Splines for "Total Variation Penalized" Densities; notably in 2D (triograms)
* Sparse Least Squares Regression (and Generalized, Robust,...)
- Sparse Matrix \longleftrightarrow Graph incidence (in "Network")
- Sparse Covariance or Correlation Matrices and Conditional Variance via sparse arithmetic
- * Teaser of a case study: ETH professor evaluation by students: Who's the best - in teaching?
- Overview of Sparse Matrices
- sparse matrix storage
- Sparse Matrices in R's Matrix: arithmetic, indexing,
- solve methods, possibly even for sparse RHS.
- Sparse Matrices factorizations: chol(), qr, Schur, LU, Bunch-Kaufmann

Large Data Analysis

This session "Large Data" will focus on one important kind of large data analysis, namely: Sparse Matrix modelling.
Further considerations a useR should know:

1. Think first, then "read" the data

- Read the docs! - The "R Data Import/Export" manual (part of the R manuals that come with R and are online in PDF and HTML).
- Note section 2.1 Variations on 'read.table'; and read help(read.table), notably about the colClasses and as.is arguments.
- How large is "large"?
- Do I only need some variables?
- Should I use a database system from R (SQLite, MySQL)?
- Rather work with simple random samples of rows ?!

2. Think again:
"First plot, then model!" (T-shirt); or slightly generalized:
"First explore, then model!",
i.e., first use exploratory data analysis (EDA).
3.

Constrained Quantile Smoothing Splines

Pin Ng (1996) defined quantile smoothing splines, as solution of, e.g.,

$$
\begin{equation*}
\min _{g} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda \cdot \max _{x}\left|g^{\prime \prime}(x)\right| \tag{1}
\end{equation*}
$$

as a nonparametric estimator for $g_{\tau}(x), \tau \in(0,1)$, where for $\tau=\frac{1}{2}, \sum_{i} \rho_{\tau}\left(r_{i}\right)=\sum_{i}\left|r_{i}\right|$ is least absolute values $\left(L_{1}\right)$ regression.
Solving (1) means linear optimization with linear constraints, and hence can easily be extended by further (linear) constraints such monotonicity, convexity, upper bounds, exact fit constraints, etc. The matrix \boldsymbol{X} corresponding to the linear optimization problem for the constrained smoothing splines is of dimension $(f \cdot n) \times n$ but has only $f_{2} \cdot n\left(f_{2} \approx 3\right)$ non-zero entries.

Fit a constrained (B-) smoothing spline to $n=100$ data points constrained to be monotone increasing, and fulfull the 3 pointwise constraints (above):

```
> library(cobs)
> Phi.cnstr <- rbind(c( 1, -3, 0), ## g(-3) >= 0
    c(-1, 3, 1), ## g(+3) <= 1
    c(0, 0, 0.5)) ## g(0) == 0.5
msp <- cobs(x, y, nknots = length(x) - 1,
+ constraint = "increase", pointwise = Phi.cnstr,
+ lambda = 0.1)
```

Example: constraints on $g($.$) are: g()$ increasing, i.e., $g^{\prime}(x)>0$, and

$$
0<g(-3) \leq g(0)=0.5 \leq g(3)<1,
$$

and $n=50$ observations, the matrices \boldsymbol{X} and $\boldsymbol{X}^{\top} \boldsymbol{X}$ are

$>$ \#\# msp <- cobs (........)
$>$ plot(msp, main $=$ "cobs (x, y, constraint= $\$ "increase \backslash ", pointwis
$>$ abline $(h=c(0,1)$, lty $=2, c o l=$ "olivedrab", lwd $=2)$
$>$ points $(0,0.5$, cex=2, col $=$ "olivedrab")
$>$ lines $(x x, \operatorname{pnorm}(2 * x x), c o l=" l i g h t ~ g r a y ") \#$ true function
cobs(x, y, constraint= "Incroase", pointwise = ..)

Sparse Least Squares

Koenker and Ng (2003) were the first to provide a sparse matrix package for R, including sparse least squares, via $\operatorname{slm} . f i t(x, y$, ...).
They provide the following nice example of a model matrix
(probably from a quantile smoothing context):
> library (Matrix)
> data(KNex) \# Koenker-Ng ex\{ample\}
> dim (KNex\$mm)
[1] 1850712
> print(image (KNex $\$ m$ m, aspect $=$ "iso", colorkey = FALSE, $+\quad$ main $=$ "Koenker-Ng model matrix"))

Koenker-Ng model mathix

or rather transposed, for screen display:

Cholesky for Sparse L.S.

For sparse matrices, the Cholesky decomposition has been the most researched factorization and hence used for least squares regression modelling. Estimating $\boldsymbol{\beta}$ in the model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ by solving the normal equations

$$
\begin{equation*}
\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\top} \boldsymbol{y} \tag{2}
\end{equation*}
$$

the Cholesky decomposition of the (symmetric positive semi-definite) $\boldsymbol{X}^{\top} \boldsymbol{X}$ is $\boldsymbol{L} \boldsymbol{L}^{\top}$ or $\boldsymbol{R}^{\top} \boldsymbol{R}$ with lower-Left upper-Right triangular matrix L or $\boldsymbol{R} \equiv L^{\top}$, respectively.
System solved via two triangular (back- and forward-) "solves":

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}=\left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}=\boldsymbol{L}^{-\top} \boldsymbol{L}^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} \tag{3}
\end{equation*}
$$

CHOLMOD (Tim Davis, 2006): Efficient sparse algorithms.

Cholesky - "Fill-in"

The usual Cholesky decomposition works, ...
$>$ X.X <- crossprod (KNex\$mm)
$>c 1<-\operatorname{chol}(X . X)$
$>$ image (X.X, main= "X'X", aspect="iso", colorkey = FALSE)
$>$ image $(c 1$, main $=" \operatorname{chol}(X, X) ", \ldots .$.

but the resulting cholesky factor has suffered from so-called fill-in, i.e., its sparsity is quite reduced compared to $\boldsymbol{X}^{\top} \boldsymbol{X}$.

Fill-reducing Permutation

So, chol ($X^{\prime} X$) suffered from fill-in (sparsity decreased considerably).
Solution: Fill-reducing techniques
which permute rows and columns of $\boldsymbol{X}^{\top} \boldsymbol{X}$, i.e., use $\boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{P}^{\prime}$ for a permutation matrix \boldsymbol{P} or in R syntax, $\mathrm{X} . \mathrm{X}[\mathrm{pvec}, \mathrm{pvec}]$ where pvec is a permutation of $1: n$.
The permutation \boldsymbol{P} is chosen such that the Cholesky factor of $\boldsymbol{P} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{P}^{\prime}$ is as sparse as possible
> image(t(c1), main= "t(chol(X'X))",)
> c2 <- Cholesky (X.X, perm = TRUE)
> image(c2, main= "Cholesky (X ' X , perm = TRUE)",)
((Note that such permutations are done for dense chol() when pivot=TRUE, but there the goal is dealing with rank-deficiency.))

Timing - Least Squares Solving

```
> y <- KNex$y
```

> m. <- as (KNex\$mm, "matrix") \# traditional (dense) Matrix
> system.time(cpod.sol <- solve(crossprod(m.), crossprod(m., y))
user system elapsed
$2.111 \quad 0.001 \quad 2.119$
> \#\# Using sparse matrices is so fast, we have to bump the time
$>$ system.time(for (i in $1: 10)$ \#\# sparse solution withOUT permuta
$+\quad$ sp1.sol <- solve(c1, solve(t(c1), crossprod(KNex\$mm)
$>$
+
+
system.time (for (i in $1: 10)$ \#\# sparse solution withOUT permuta
sp1.sol <- solve(c1, solve(t(c1), crossprod(KNex\$mm
user system elapsed
$0.049 \quad 0.000 \quad 0.048$
> system.time(for(i in 1:10) \#\# sparse Cholesky WITH fill-redu
$+\quad$ sp2.sol <- solve(c2, crossprod $(\mathrm{KNex} \$ \mathrm{~mm}, \mathrm{y}))$)
$\begin{array}{rrr}\text { user } & \text { system } & \text { elapsed } \\ 0.009 & 0.000 & 0.010\end{array}$
> stopifnot(all.equal(sp1.sol, sp2.sol),
$+$
all.equal(as.vector(sp2.sol), c(cpod.sol)))

Fill-reducing Permutation - Result

Teaser case study: Who's the best prof?

- Private donation for encouraging excellent teaching at ETH
- Student union of ETH Zurich organizes survey to award prizes: Best lecturer - of ETH, and of each of the 14 departments.
- Smart Web-interface for survey: Each student sees the names of his/her professors from the last 4 semesters and all the lectures that applied.
- ratings in $\{1,2,3,4,5\}$.
- high response rate

Modelling the ETH teacher ratings

Model: The rating depends on

- students (s) (rating subjectively)
- teacher (d) - main interest
- department (dept)
- "service" lecture or "own department student", (service: 0/1).
- semester of student at time of rating (studage $\in\{2,4,6,8\}$).
- how many semesters back was the lecture (lectage).

Main question: Who's the best prof?
Hence, for "political" reasons, want d as a fixed effect.

Who's the best prof - data

```
> ## read the data; several factor assignments, such as
> md$d <- factor(md$d) # Lecturer_ID ("d"ozentIn)
s str(md)
'data.frame': }73421\mathrm{ obs. of 7 variables:
$ s : Factor w/ 2972 levels "1","2","3","4",\ldots: 1 11 1 1 2 2 3 3 3
$ d : Factor w/ 1128 levels "1","6","7","8", ..: 525 560 832 1068
$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 1 1 1
$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<,.: 2 1 2 2 1 1 1 1
$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...
$ dept : Factor w/ 15 levels "1","2","3","4",..: 15 5 15 12 2 2 14 3
$y : int 5 2 5 3 2 4 4 5 5 4 ...
```


Model for ETH teacher ratings

Want d ("teacher_ID", ≈ 1000 levels) as fixed effect.
Consequently, in

$$
y=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{b}+\boldsymbol{\epsilon}
$$

have \boldsymbol{X} as $n \times 1000$ (roughly)
have \boldsymbol{Z} as $n \times 5000, n \approx 70^{\prime} 000$.

```
> fm0 <- lmer(y ~ d*dept + dept*service + studage + lectage + (1
+ data = md)
```

Error in model.matrix.default(mt, mf, contrasts) :
cannot allocate vector of length 1243972003
> $1243972003 / 2 \wedge 20$ \#\# number of Mega bytes
[1] 1186.344
\longrightarrow Want sparse matrices for \boldsymbol{X} and \boldsymbol{Z} and crossprods, etc.

Intro to Sparse Matrices in R package Matrix

simple example - 2 -
$>\operatorname{str}(A)$ \# note that *internally* O-based indices (i,j) are used
Formal class 'dgTMatrix' [package "Matrix"] with 6 slots

- The R Package Matrix contains dozens of matrix classes and hundreds of method definitions.
- Has sub-hierarchies of denseMatrix and sparseMatrix.
- Very basic intro in some of sparse matrices:
..@ i : int $[1: 7] 0 \begin{array}{llllll}0 & 3 & 4 & 5 & 6 & 7\end{array}$
..@ $j \quad$ int $[1: 7] \begin{array}{lllllll}1 & 8 & 5 & 6 & 7 & 8 & 9\end{array}$
..@ Dim : int [1:2] 1020
..@ Dimnames:List of 2
. . . \$: NULL
.. . . \$: NULL
$\begin{array}{lllllllll}\text {..@ x } & \text { num [1:7] } & 14 & 21 & 28 & 35 & 42 & 49\end{array}$
..@ factors : list()
$>\mathrm{A}[2: 7,12: 20]<-\operatorname{rep}(c(0,0,0,(3: 1) * 30,0)$, length $=6 * 9)$

simple example - Triplet form

The most obvious way to store a sparse matrix is the so called "Triplet" form; (virtual class TsparseMatrix in Matrix):
$>\mathrm{A}<-\operatorname{spmatrix}(10,20, i=c(1,3: 8)$,
$+$
$+$
$j=c(2,9,6: 10)$,
$\mathrm{x}=7$ * (1:7))
> A \# a "dgTMatrix"
10 x 20 sparse Matrix of class "dgTMatrix"

simple example - $3-$
> A >= 20 \# -> logical sparse; nice show() method
10×20 sparse Matrix of class "lgTMatrix"

sparse compressed form

Conclusions

Triplet representation: easy for us humbly humans, but can be both made smaller and more efficient for (column-access heavy) operations:
The "column compressed" sparse representation, (virtual class CsparseMatrix in Matrix):
> Ac <- as(t(A), "CsparseMatrix")
$>\operatorname{str}(\mathrm{AC})$
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i \quad : int $[1: 30] 11314158141516515 \ldots c$
..@ p : int $[1: 11] \quad 0 \quad 1481217 \quad 23 \quad 293030 \ldots$
..(© Dim : int [1:2] 2010
..@ Dimnames:List of 2
.. .. \$: NULL
.. .. \$: NULL
..@ x : num $[1: 30] 7306090143060902130 \ldots$ © factors : list()
column index slot j replaced by a column pointer slot p .

- Sparse Matrices: crucial for several important data modelling situations
- There's the R package Matrix
- ...

Many ? more conclusions at the end of Doug Bates' talk :-)

Other R packages for large "matrices"

- biglm - updating QR decompositions; storing $O\left(p^{2}\right)$ instead of $O(n \times p)$.
- R.Huge: Using class FileMatrix to store matrices on disk instead of RAM memory.
- SQLiteDF by Miguel Manese ("our" Google Summer of Code project 2006).
Description: Transparently stores data frames \& matrices into SQLite tables.
- ...
- sqldf by Gabor Grothendieck: learn SQL $\longleftrightarrow R$
- ...
- ff package (memory mapping arrays) by Adler, Nendic, Zucchini and Glaser: poster of today and \qquad . winner of the useR!2007 programming competition.

