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Doug Bates has introduced me to sparse matrices and the
Matrix package, and the last two years have been a lot of fun in
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Overview

I Large Data – not just sparse matrices
I (Sparse) Matrices for Large Data : Applications

I LMER – talk by Doug Bates
* Quantile Smoothing with Constraints
I Regression Splines for “Total Variation Penalized” Densities;

notably in 2D (triograms)
* Sparse Least Squares Regression (and Generalized, Robust,...)
I Sparse Matrix ←→ Graph incidence (in “Network”)
I Sparse Covariance or Correlation Matrices and Conditional

Variance via sparse arithmetic
I * Teaser of a case study: ETH professor evaluation by

students: Who’s the best — in teaching?

I Overview of Sparse Matrices
I sparse matrix storage
I Sparse Matrices in R’s Matrix: arithmetic, indexing,
I solve methods, possibly even for sparse RHS.
I Sparse Matrices factorizations: chol(), qr, Schur, LU,

Bunch-Kaufmann

Large Data Analysis
This session “Large Data” will focus on one important kind of
large data analysis, namely: Sparse Matrix modelling.
Further considerations a useR should know:

1. Think first, then “read” the data
I Read the docs! – The “R Data Import/Export” manual

(part of the R manuals that come with R and are online in
PDF and HTML).

I Note section 2.1 Variations on ‘read.table’; and read
help(read.table), notably about the colClasses and
as.is arguments.

I How large is “large”?
I Do I only need some variables?
I Should I use a database system from R (SQLite, MySQL)?
I Rather work with simple random samples of rows ?!

2. Think again:
“First plot, then model!” (T-shirt); or slightly

generalized:
“First explore, then model!”,

i.e., first use exploratory data analysis (EDA).

3. . . . . . .



Constrained Quantile Smoothing Splines

Pin Ng (1996) defined quantile smoothing splines, as solution of,
e.g.,

min
g

n∑
i=1

ρτ (yi − g(xi)) + λ ·max
x

∣∣g′′(x)∣∣ . (1)

as a nonparametric estimator for gτ (x), τ ∈ (0, 1), where for
τ = 1

2 ,
∑

i ρτ (ri) =
∑

i |ri| is least absolute values (L1) regression.

Solving (1) means linear optimization with linear constraints, and
hence can easily be extended by further (linear) constraints such
monotonicity, convexity, upper bounds, exact fit constraints, etc.
The matrix X corresponding to the linear optimization problem for
the constrained smoothing splines is of dimension (f · n)× n but
has only f2 · n (f2 ≈ 3) non-zero entries.

Example: constraints on g(.) are: g() increasing, i.e., g′(x) > 0,
and

0 < g(−3) ≤ g(0) = 0.5 ≤ g(3) < 1,

and n = 50 observations, the matrices X and XᵀX are

constrained B-spline fit

Fit a constrained (B-) smoothing spline to n = 100 data points
constrained to be monotone increasing, and fulfull the 3 pointwise
constraints (above):

> library(cobs)
> Phi.cnstr <- rbind(c( 1, -3, 0), ## g(-3) >= 0
+ c(-1, 3, 1), ## g(+3) <= 1
+ c( 0, 0, 0.5)) ## g( 0) == 0.5
> msp <- cobs(x, y, nknots = length(x) - 1,
+ constraint = "increase", pointwise = Phi.cnstr,
+ lambda = 0.1)

> ## msp <- cobs(.........)
> plot(msp, main = "cobs(x,y, constraint= \"increase\", pointwise = ..)")
> abline(h = c(0,1), lty=2, col = "olivedrab", lwd = 2)
> points(0, 0.5, cex=2, col = "olivedrab")
> lines(xx, pnorm(2 * xx), col="light gray")# true function



Sparse Least Squares
Koenker and Ng (2003) were the first to provide a sparse matrix
package for R, including sparse least squares, via slm.fit(x,y,
...).
They provide the following nice example of a model matrix
(probably from a quantile smoothing context):
> library(Matrix)
> data(KNex) # Koenker-Ng ex{ample}
> dim (KNex$mm)

[1] 1850 712

> print(image(KNex$mm, aspect = "iso", colorkey = FALSE,
+ main = "Koenker-Ng model matrix"))

or rather transposed, for screen display:

Cholesky for Sparse L.S.

For sparse matrices, the Cholesky decomposition has been the
most researched factorization and hence used for least squares
regression modelling. Estimating β in the model y = Xβ + ε by
solving the normal equations

XᵀXβ = Xᵀy (2)

the Cholesky decomposition of the (symmetric positive
semi-definite) XᵀX is LLᵀ or RᵀR with lower-Left upper-Right
triangular matrix L or R ≡ Lᵀ, respectively.
System solved via two triangular (back- and forward-) “solves”:

β̂ = (XᵀX)−1Xᵀy = (LLᵀ)−1Xᵀy = L−ᵀL−1Xᵀy (3)

CHOLMOD (Tim Davis, 2006): Efficient sparse algorithms.

Cholesky – “Fill-in”

The usual Cholesky decomposition works, . . .
> X.X <- crossprod(KNex$mm)
> c1 <- chol(X.X)
> image(X.X, main= "X’X", aspect="iso", colorkey = FALSE)
> image(c1, main= "chol(X’X)", ......)

but the resulting cholesky factor has suffered from so-called fill-in,
i.e., its sparsity is quite reduced compared to XᵀX.



Fill-reducing Permutation

So, chol(X’X) suffered from fill-in (sparsity decreased
considerably).

Solution: Fill-reducing techniques
which permute rows and columns of XᵀX, i.e., use PXᵀXP ′ for
a permutation matrix P or in R syntax, X.X[pvec,pvec] where
pvec is a permutation of 1:n.

The permutation P is chosen such that the Cholesky factor of
PXᵀXP ′ is as sparse as possible
> image(t(c1), main= "t( chol(X’X) )", ..........)
> c2 <- Cholesky(X.X, perm = TRUE)
> image(c2, main= "Cholesky(X’X, perm = TRUE)", ........)

((Note that such permutations are done for dense chol() when

pivot=TRUE, but there the goal is dealing with rank-deficiency.))

Fill-reducing Permutation - Result

Timing – Least Squares Solving

> y <- KNex$y
> m. <- as(KNex$mm, "matrix") # traditional (dense) Matrix
> system.time(cpod.sol <- solve(crossprod(m.), crossprod(m., y)))

user system elapsed

2.111 0.001 2.119

> ## Using sparse matrices is so fast, we have to bump the time by 10 :
> system.time(for(i in 1:10) ## sparse solution withOUT permutation
+ sp1.sol <- solve(c1,solve(t(c1), crossprod(KNex$mm,y))))

user system elapsed

0.049 0.000 0.048

> system.time(for(i in 1:10) ## sparse Cholesky WITH fill-reducing permutation:
+ sp2.sol <- solve(c2, crossprod(KNex$mm, y)))

user system elapsed

0.009 0.000 0.010

> stopifnot(all.equal(sp1.sol, sp2.sol),
+ all.equal(as.vector(sp2.sol), c(cpod.sol)))



Teaser case study: Who’s the best prof?

I Private donation for encouraging excellent teaching at ETH

I Student union of ETH Zurich organizes survey to award prizes:
Best lecturer — of ETH, and of each of the 14 departments.

I Smart Web-interface for survey: Each student sees the names
of his/her professors from the last 4 semesters and all the
lectures that applied.

I ratings in {1, 2, 3, 4, 5}.
I high response rate

Who’s the best prof — data

> ## read the data; several factor assignments, such as
> md$d <- factor(md$d) # Lecturer_ID ("d"ozentIn)
> str(md)

’data.frame’: 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 3 ...

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 62 406 3 6 19 75 ...

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ...

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1 1 ...

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ dept : Factor w/ 15 levels "1","2","3","4",..: 15 5 15 12 2 2 14 3 3 3 ...

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

Modelling the ETH teacher ratings

Model: The rating depends on

I students (s) (rating subjectively)

I teacher (d) – main interest

I department (dept)

I “service” lecture or “own department student”, (service:
0/1).

I semester of student at time of rating (studage∈ {2, 4, 6, 8}).

I how many semesters back was the lecture (lectage).

Main question: Who’s the best prof?
Hence, for “political” reasons, want d as a fixed effect.

Model for ETH teacher ratings

Want d (“teacher ID”, ≈ 1000 levels) as fixed effect.
Consequently, in

y = Xβ +Zb+ ε

have X as n× 1000 (roughly)
have Z as n× 5000, n ≈ 70′000.

> fm0 <- lmer(y ~ d*dept + dept*service + studage + lectage + (1|s),
+ data = md)

Error in model.matrix.default(mt, mf, contrasts) :

cannot allocate vector of length 1243972003
> 1243972003 / 2^20 ## number of Mega bytes

[1] 1186.344

−→ Want sparse matrices for X and Z and crossprods, etc.



Intro to Sparse Matrices in R package Matrix

I The R Package Matrix contains dozens of matrix classes and
hundreds of method definitions.

I Has sub-hierarchies of denseMatrix and sparseMatrix.

I Very basic intro in some of sparse matrices:

simple example — Triplet form

The most obvious way to store a sparse matrix is the so called
“Triplet” form; (virtual class TsparseMatrix in Matrix):
> A <- spMatrix(10,20, i = c(1,3:8),
+ j = c(2,9,6:10),
+ x = 7 * (1:7))
> A # a "dgTMatrix"

10 x 20 sparse Matrix of class "dgTMatrix"

[1,] . 7 . . . . . . . . . . . . . . . . . .

[2,] . . . . . . . . . . . . . . . . . . . .

[3,] . . . . . . . . 14 . . . . . . . . . . .

[4,] . . . . . 21 . . . . . . . . . . . . . .

[5,] . . . . . . 28 . . . . . . . . . . . . .

[6,] . . . . . . . 35 . . . . . . . . . . . .

[7,] . . . . . . . . 42 . . . . . . . . . . .

[8,] . . . . . . . . . 49 . . . . . . . . . .

[9,] . . . . . . . . . . . . . . . . . . . .

[10,] . . . . . . . . . . . . . . . . . . . .

simple example – 2 –

> str(A) # note that *internally* 0-based indices (i,j) are used

Formal class ’dgTMatrix’ [package "Matrix"] with 6 slots

..@ i : int [1:7] 0 2 3 4 5 6 7

..@ j : int [1:7] 1 8 5 6 7 8 9

..@ Dim : int [1:2] 10 20

..@ Dimnames:List of 2

.. ..$ : NULL

.. ..$ : NULL

..@ x : num [1:7] 7 14 21 28 35 42 49

..@ factors : list()

> A[2:7, 12:20] <- rep(c(0,0,0,(3:1)*30,0), length = 6*9)

simple example – 3 –

> A >= 20 # -> logical sparse; nice show() method

10 x 20 sparse Matrix of class "lgTMatrix"

[1,] . . . . . . . . . . . . . . . . . . . .

[2,] . . . . . . . . . . . . . | | | . . . .

[3,] . . . . . . . . . . . . . . | | | . . .

[4,] . . . . . | . . . . . . . . . | | | . .

[5,] . . . . . . | . . . . | . . . . | | | .

[6,] . . . . . . . | . . . | | . . . . | | |

[7,] . . . . . . . . | . . | | | . . . . | |

[8,] . . . . . . . . . | . . . . . . . . . .

[9,] . . . . . . . . . . . . . . . . . . . .

[10,] . . . . . . . . . . . . . . . . . . . .



sparse compressed form

Triplet representation: easy for us humbly humans, but can be
both made smaller and more efficient for (column-access heavy)
operations:
The “column compressed” sparse representation, (virtual class
CsparseMatrix in Matrix):
> Ac <- as(t(A), "CsparseMatrix")
> str(Ac)

Formal class ’dgCMatrix’ [package "Matrix"] with 6 slots

..@ i : int [1:30] 1 13 14 15 8 14 15 16 5 15 ...

..@ p : int [1:11] 0 1 4 8 12 17 23 29 30 30 ...

..@ Dim : int [1:2] 20 10

..@ Dimnames:List of 2

.. ..$ : NULL

.. ..$ : NULL

..@ x : num [1:30] 7 30 60 90 14 30 60 90 21 30 ...

..@ factors : list()
column index slot j replaced by a column pointer slot p.

Other R packages for large “matrices”

I biglm – updating QR decompositions; storing O(p2) instead
of O(n× p).

I R.Huge: Using class FileMatrix to store matrices on disk
instead of RAM memory.

I SQLiteDF by Miguel Manese (“our” Google Summer of Code
project 2006).
Description: Transparently stores data frames & matrices
into SQLite tables.

I . . .

I sqldf by Gabor Grothendieck: learn SQL ←→ R

I . . .

I ff package (memory mapping arrays) by Adler, Nendic,
Zucchini and Glaser: poster of today and . . . . . . . . . winner of
the useR!2007 programming competition.

Conclusions

I Sparse Matrices: crucial for several important data modelling
situations

I There’s the R package Matrix

I . . .

Many ? more conclusions at the end of Doug Bates’ talk :-)


