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Psychophysics, 
qu’est-ce que c’est ?

A body of techniques and analytic methods to study 
the relation between physical stimuli and the organism’s 
(classification) behavior to infer internal states of the 
organism or their organization.

Gustav Fechner (1801 - 1887)



Difference scaling is a psychophysical procedure

used to estimate a perceptual scale 

for stimuli distributed along a physical continuum.

Maloney & Yang, 2003 

Example:  series along a line in tristimulus space,
What are the perceptual distances between samples?



1:1 6:1 9:1 12:1 15:1

18:1 21:1 24:1 27:1 30:1

Charrier, Maloney, Cherifi & Knoblauch, submitted

Example:  VQ compressed images,

Up to what compression rate can the observer
detect no loss of image quality?
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Example:  Correlation in scatterplots



Difference Scaling:  Experimental Procedure
From a set of p stimuli, {I1 < I2 < . . . < Ip},

a random quadruple, 
is chosen (w/out replacement) and presented 
to the observer as in this example,

{Ia, Ib ; Ic, Id},

Between which pair (upper/lower) is the 
perceived difference greatest?
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For a sequence of p stimuli, there are 
(

p

4

)

non-ovelapping quadruples:
210 quadruples for 
330 quadruples for

p = 10

p = 11, etc.

of all possible non-overlapping quadruples a < b < c < d for p stimuli is used, but this
choice is not critical to the method (Maloney and Yang, 2003). By restricting the set of
quadruples in this way, we avoid the possibility that two images in a quadruple would be
identical. If p = 11, as in the example, there are 11C4 = 330 different quadruples. For
p = 11, the observer may judge each of the 330 non-overlapping quadruples in randomized
order, or the experimenter may choose to have the observer judge each of the quadruples m
times, completing 330m trials in total. Of course, the number of trials judged by the observer
affects the accuracy of the estimated difference scale (See Maloney and Yang, 2003). The
time needed to judge all 330 trials in the example is roughly 10-12 minutes.
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Figure 2: (a) An example of a trial stimulus presentation from the difference scaling ex-
periment for estimating correlation differences in the scatterplot experiment. The observer
must judge whether the difference in perceived correlation is greater in the lower or upper
pair of scatterplots. (b) Estimated difference scale for observer KK, from 990 judgments,
distributed over 3 sessions for judging differences of correlation between scatterplots. The
error bars correspond to twice the standard deviation of the bootstrap samples.

At the end of the experiment, the data are represented as an n×5 matrix or data.frame
in which each row corresponds to a trial, four columns give the indices, (a, b, c, d) of the
stimuli from the ordered set of p and one column indicates the response of the observer to
the quadruple as a 0 or 1, indicating choice of the first or second pair. For example,

resp S1 S2 S3 S4
1 0 4 8 2 3
2 1 2 3 6 11
3 1 2 6 7 10
4 0 4 11 1 2
5 0 9 11 7 8
6 0 7 10 1 3

3

At the termination of an experiment
(about 15 minutes), the data are
stored in a 5 column data frame.
6 lines of an example are shown here.

One column for the response indicating
whether the upper (1) or lower (0)
pair was chosen.
4 columns for the indices of the stimuli
in the sequence, 1 : p



The aim of the Maximum Likelihood Difference Scaling (MLDS)
procedure is to estimate scale values,
that best capture the observer’s judgments of the 
perceptual difference between the stimuli in each pair.

(ψ1, ψ2, . . . , ψp),
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Compression Rate

The MLDS package, available on 
CRAN, provides tools for  performing 
this analysis in R.  An example scale 
obtained from an observer for the 
“apples” sequence of VQ compressed 
images is shown on the right:



The decision model

where      are estimated scale values, 
and     a  scale factor.   

ψi ε ∼ N(0, σ),
σ

∆(a, b ; c, d) = |ψd − ψc| − |ψb − ψa| + ε > 0,

Given a quadruple,
from a single trial, we assume that the observer
chooses the upper pair to be further apart
when

q = (a, b ; c, d),



Estimation of Scale Values

gives the first 6 rows of the data.frame for the observations that generated the scale shown
in the lower right of Figure 1.

From these data, the experimenter estimates the perceptual scale values ψ1, ψ2, . . . ,ψp

corresponding to the stimuli, I1, . . . , Ip, as follows. Given a quadruple, (a, b; c, d) from a
single trial, we first assume that the observer judged Ia, Ib to be further apart than Ic, Id

precisely when,
|ψb − ψa| > |ψd − ψc| (1)

that is, the difference scale predicts judgment of perceptual difference.
It is unlikely that human observers would be so reliable in judgment as to satisfy the

criterion just given, particularly if the perceptual differences |ψb−ψa| and |ψd−ψc| are close.
Maloney and Yang (2003) proposed a stochastic model of difference judgment that allows
the observer to exhibit some stochastic variation in judgment. Let Lab = |ψb − ψa| denote
the unsigned length of the interval Ia, Ib . The proposed decision model is an equal-variance
Gaussian signal detection model (Green and Swets, 1974) where the signal is the difference
in the lengths of the intervals,

δ(a, b; c, d) = Lcd − Lab = |ψd − ψc|− |ψb − ψa| (2)

If δ is positive, the observer should choose the second interval as larger, when it is negative,
the first. When δ is small, negative or positive, relative to the Gaussian standard deviation,
σ, we expect the observer, presented with the same stimuli, to give different, apparently
inconsistent judgments. The decision variable employed by the observer is assumed to be

∆(a, b; c, d) = δ(a, b; c, d) + ε = Lcd − Lab + ε (3)

where ε ∼ N (0, 1): given the quadruple, (a, b; c, d) the observer selects the pair Ic, Id precisely
when,

∆(a, b; c, d) > 0. (4)

2.1 Direct maximization of the likelihood

In each experimental condition the observer completes n trials, each based on a quadruple
qk =

(
ak, bk; ck, dk

)
, k = 1, n. The observer’s response is coded as Rk = 0 (the difference

of the first pair is judged larger) or Rk = 1 (second pair judged larger). We denote the
outcome “cd judged larger than ab” by cd # ab for convenience. We fit the parameters
Ψ = (ψ1, ψ2, . . . ,ψp) and σ by maximizing the likelihood,

L(Ψ, σ) =
n∏

k=1

Φ

(
δ
(
qk

)

σ

)1−Rk
(

1− Φ

(
δ
(
qk

)

σ

))Rk

, (5)

where Φ(x) denotes the cumulative standard normal distribution and δ
(
qk

)
= δ

(
ak, b,; ck, dk

)

as defined in Equation 3.
At first glance, it would appear that the stochastic difference scaling model just presented

has p+1, free parameters: ψ1, . . . ,ψp together with the standard deviation of the error term,
σ. However, any linear transformation of the ψ1, . . . ,ψp together with a corresponding scaling

4

Maloney and Yang (2003) used a direct method for estimating
the maximum likelihood scale values,

where

δ(qk) = |ψd − ψc| − |ψb − ψa|

Φ

Rk

Ψ = (ψ2, ψ3, . . . , ψp−1)

is the cumulative standard Gaussian (a probit analysis)

is 0/1 if the judgment is lower/upper

ψ1 = 0, ψp = 1 for identifiability,

p − 1leaving           parameters to estimate

Journal of Statistical Software 17

With both methods, each scale value is treated as an independent covariate. Generalized Ad-
ditive Models might provide a useful approach for incorporating the ordering of the physical
scale in the model (Hastie and Tibshirani 1990; Wood 2006). Second, it would be useful to
incorporate random effects that influence the scale when an observer repeats the experiment
or to account for variations between individuals. Examination of the three repetitions in the
data set kk suggest that the estimate of σ or equivalently the maximum scale value would be
a likely candidate to explain such a source of variability.
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Estimation of Scale Values
The problem can also be conceptualized as a GLM.  

Each level of the stimulus is treated as a covariate in the model matrix,

taking on values of                in the design matrix, 

depending on the presence of the stimulus in a trial and

its weight in the decision variable, with absolute value signs removed.

0 or ± 1

of all possible non-overlapping quadruples a < b < c < d for p stimuli is used, but this
choice is not critical to the method (Maloney and Yang, 2003). By restricting the set of
quadruples in this way, we avoid the possibility that two images in a quadruple would be
identical. If p = 11, as in the example, there are 11C4 = 330 different quadruples. For
p = 11, the observer may judge each of the 330 non-overlapping quadruples in randomized
order, or the experimenter may choose to have the observer judge each of the quadruples m
times, completing 330m trials in total. Of course, the number of trials judged by the observer
affects the accuracy of the estimated difference scale (See Maloney and Yang, 2003). The
time needed to judge all 330 trials in the example is roughly 10-12 minutes.
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Figure 2: (a) An example of a trial stimulus presentation from the difference scaling ex-
periment for estimating correlation differences in the scatterplot experiment. The observer
must judge whether the difference in perceived correlation is greater in the lower or upper
pair of scatterplots. (b) Estimated difference scale for observer KK, from 990 judgments,
distributed over 3 sessions for judging differences of correlation between scatterplots. The
error bars correspond to twice the standard deviation of the bootstrap samples.

At the end of the experiment, the data are represented as an n×5 matrix or data.frame
in which each row corresponds to a trial, four columns give the indices, (a, b, c, d) of the
stimuli from the ordered set of p and one column indicates the response of the observer to
the quadruple as a 0 or 1, indicating choice of the first or second pair. For example,

resp S1 S2 S3 S4
1 0 4 8 2 3
2 1 2 3 6 11
3 1 2 6 7 10
4 0 4 11 1 2
5 0 9 11 7 8
6 0 7 10 1 3

3

p₁ p₂ p₃ p₄ p₅ p₆ p₇ p₈ p₉ p₁₀ p₁₁

For model identifiability, we drop the first column (fixing            
 and            ).

ψ1 = 0

σ = 1

















0 1 −1 −1 0 0 0 1 0 0 0

0 1 −1 0 0 −1 0 0 0 0 1

0 1 0 0 0 −1 −1 0 0 1 0

1 −1 0 −1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 −1 −1 0 1

1 0 −1 0 0 0 −1 0 0 1 0



















> kk.ix <- make.ix.mat(kk)
> head(kk.ix)
  resp stim.2 stim.3 stim.4 stim.5 stim.6 stim.7 stim.8 stim.9 stim.10 stim.11
1    1      1      0     -1      0     -1      0      1      0       0       0
2    1      0      0     -1      0     -1      0      0      1       0       0
3    1      1     -1      0      0      0     -1      0      1       0       0
4    1      1      0      0     -1     -1      1      0      0       0       0
5    0      0     -1      0      0     -1      1      0      0       0       0
6    0      0      0      0     -1     -1      0      0      1       0       0

η (E [Y ]) = Xβ

> glm(resp ~ . - 1, family = binomial( "probit" ), data = kk.ix)

Estimation of Scale Values



The MLDS package

The MLDS package provides a modeling function, 
mlds(), that is essentially a wrapper for either glm()
or optim(), and will enable estimation of the 
perceptual scale values, given a data frame with
the previously described structure.

mlds(data, stimulus, method = "glm", lnk = "probit", 
                opt.meth = "BFGS", opt.init = NULL, 
                control = glm.control(maxit = 50000, epsilon = 1e-14),
                ... )

It outputs an S3 object of class ‘mlds’ which can be
examined further using several method functions:  

summary, plot, predict, fitted, logLik, AIC and boot



Knoblauch & Maloney, submitted 

As a running example, we consider data sets from an 
experiment in which one observer judged differences 
in correlation between scatterplots for 11 levels of correlation:  

c(seq(0, 0.9, len = 10), 0.98)

100 points generated with: 

MASS:::mvrnorm(100, mu = c(0, 0), Sigma = matrix(c(r, 0, 0, r), 2, 2))
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The first author ran himself on 330 trials on 3 separate
days, generating data sets kk1, kk2, kk3, available in the
package.   A typical trial is indicated below.

Between which pair, lower/upper, is the difference greatest?

> library(MLDS)
> data(kk1)
> data(kk2)
> data(kk3)

runSampleExperiment("DisplayOneTrial", "DefineMyScale")



The data sets have class ‘mlds.df’ that inherits from ‘data.frame’.
It differs in including two attributes, “stimulus” and “invord”.

> str(kk1)
Classes 'mlds.df' and 'data.frame':	 330 obs. of  5 variables:
 $ resp: int  1 0 0 0 1 1 1 1 0 1 ...
 $ S1  : int  2 6 7 6 6 6 1 3 2 3 ...
 $ S2  : int  4 9 9 7 7 9 2 5 5 4 ...
 $ S3  : int  6 1 2 2 1 1 8 10 7 5 ...
 $ S4  : int  8 4 3 5 3 5 9 11 8 10 ...
 - attr(*, "invord")= logi  FALSE  TRUE  TRUE  TRUE  TRUE  
TRUE ...
 - attr(*, "stimulus")= num  0.0 0.1 0.2 0.3 0.4 ...

stimulus is a numeric vector of the physical stimulus levels

invord is a logical vector indicating whether on each trial 
the higher scale values were on the botton or top.



It is sometimes necessary to reorder the pairs so that the higher 
physical values are after the lower ones.

This is conveniently done with the SwapOrder() function, which
uses the “invord” attribute, if present.  

The Rbind() function combines data sets and their attributes.

> kk <- SwapOrder( Rbind( kk1, kk2, kk3 ) )

to produce one large object.



> ( kk.mlds <- mlds(kk) )

Perceptual Scale:
      0     0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8 
 0.0000 -0.0454  0.0439 -0.0863  0.5682  1.4234  2.0695  2.6661  3.5527 
    0.9    0.98 
 4.4297  5.5739 

sigma:
[1] 1

> ( kk.mlds2 <-  mlds(kk, method = "optim", opt.init = c(seq(0, 1, len = 11), 0.2)) )

Perceptual Scale:
       0      0.1      0.2      0.3      0.4      0.5      0.6      0.7 
0.00e+00 4.70e-05 1.54e-02 1.19e-07 1.10e-01 2.61e-01 3.76e-01 4.83e-01 
     0.8      0.9     0.98 
6.40e-01 7.96e-01 1.00e+00 

sigma:
[1] 0.175



> plot(kk.mlds, standard.scale =TRUE, 
cex = 1.7, pch = 16, col = "black")

> lines(kk.mlds2, lwd = 2)
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boot.mlds(x, nsim, ...)

Bootstrap Errors on mlds Scale Values
We have included a function for estimating bootstrap 
standard errors on the scale values

where x is of class ‘mlds’ and nsim is the number of 
bootstrap repetitions.

The fitted probabilities are used 
with rbinom() to generate new 
responses which are fitted using 
mlds() to generate new bootstrap 
scale values.   

These boostrap scale values are 
then used to generate the error 
bars (10 000 replications)
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Ordering property:  Observer must be able to reliably order stimuli,  
                     ,  in agreement with scale values,                         .
(usually not formally tested and evidently satisfied).

Six-point property:  Given any two groups of three intervals,
             and               ,  

if                 and                then                .

Maloney and Yang (2003) proposed a resampling method for 
testing the six-point property that we have implemented in MLDS.

(I1, I2, . . . , Ip) (ψ1, ψ2, . . . , ψp)
Journal of Statistical Software 9

! ! ! ! ! !

a b c a' b' c'

Figure 3: Six-Point Condition: Given stimuli a, b, c and a′, b, c′ ordered along a scale, if
ab ! a′b′ and bc ! b′c′, then ac ! a′c′.

only slightly greater than ψc′ − ψa′ . Then we might expect that the observer’s probability of
judging ab ! a′b′ is only slightly greater that 0.5 and similarly with the other two quadruples.
Hence, he has an appreciable chance of judging that ab ! a′b′ and bc ! b′c′ but ac ≺ a′c′ or
ab ≺ a′b′ and bc ≺ b′c′ but ac ! a′c′, either a violation of the six-point property.
Maloney and Yang (2003) proposed a method for testing the six-point property that takes
into account the stochastic nature of the observer’s judgment and uses a resampling procedure
(Efron and Tibshirani 1993) to test the hypothesis that the MLDS model is an appropriate
model of the observer’s judgments.
Given the experimental design and all of the quadruples used, we can enumerate all six-point
conditions present in the experiment, indexing them by k = 1, n6. We count the number of
times, Vk, that the observer has violated the kth six-point condition during the course of the
experiment and the number of times he has satisfied it, Sk. If we knew the probability that
the observer should violate this six-point condition pk, then we could compute the probability
of the observed outcome by the binomial formula,

Λk
6 =

(
Vk + Sk

Vk

)
pVk

k (1− pk)Sk , (11)

and we could compute the overall likelihood probability

Λ6 =
N6∏

a=1

Λa
6. (12)

Under the hypothesis that the difference scale model is an accurate model of the observer’s
judgments, we have the fitted estimates of scale values ψ̂1, . . . , ψ̂p and σ̂. We can compute
estimates of the values Λ̂a

6 based on these scale values and compute an estimate of Λ̂6 =∏N6
a=1 Λ̂a

6. This is an estimate of the probability of the observed pattern of six-point violations
and successes. We next simulate the observer N times with the fitted parameter values
ψ̂1, . . . , ψ̂p and σ̂ of the actual observer used for the simulated observer and perform the
analysis above to get N bootstrap estimates Λ̂∗

6 of Λ̂6. Under the hypothesis that MLDS
is an accurate model of the observer’s judgments, Λ̂6 should be similar in value to Λ̂∗

6 and
we employ this bootstrap procedure to test the hypothesis at the 0.05 level by determining
whether Λ̂6 falls below the 5th percentile of the bootstrap values Λ̂∗

6 ( See Maloney and Yang
(2003) for details).

(a, b, c) (a′, b′, c′)

ab ! a
′
b
′

bc ! b
′
c
′

ac ! a
′
c
′

1.

2.
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Performing a six-point test on these data with 10000 simulations requires about 15 minutes
on the same machine indicated above.

kk.6pt <- simu.6pt(kk.mlds, 10000)

str(kk.6pt}

List of 4
$ boot.samp: num [1:10000] -488 -539 -531 -502 -447 ...
$ lik6pt : num -425
$ p : num 0.848
$ N :num 10000

Examination of the structure of the returned list with str shows the p-value and log-likelihood
for the number of violations of the six-point test from the data and indicates that the observer
did not make a significantly greater number of six-point violations than an ideal observer.
Figure 6 shows a histogram of the log-likelihoods from such a simulation with the observed
log-Likehood indicated by a thick vertical line. These results support the appropriateness of
the scale as a description of the observer’s judgments.

Histogram of kk.6pt$boot.samp

log(Likelihood)
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Figure 6: Histogram of log-likelihood values from the six-point test to data set kk. The thick
vertical line indicates the observed 6-point likelihood on the data set.

5. Future directions

There are several directions in which MLDS might be developed, two of which will be men-
tioned here. First, the current fitting procedures ignore the ordering of the physical scale.

Scale validation:   Six-point test
We have written a function to estimate the likelihood of the
six-point choices from an ‘mlds’ object and then using the fitted
probabilities to generate new responses to be fit, that permit us
to compare the observed likelihood with those based on a large
number of resamplings.

kk.6pt <- simu.6pt(kk.mlds, nsim = 10000)

returns the six-point likelihood for the 
observed data as well as the 10 000 
resampled likelihoods.

p = 0.85

L6pt = −425
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p = 2.02
! = 0.163

Future Directions
1. Formula interface: 

The current fitting procedure requires the estimation of
          parameters.  The fitted scale may suggest a simpler
parametric form with fewer parameters.
p − 1

 kk.fun <- mlds.function(~sx^p, p = c(4, 0.2), data = kk)

takes a one-sided formula with parameters, p and sigma,
yielding only two parameters.

plot(kk.mlds, standard.scale =TRUE, 
cex = 1.7, pch = 16, col = "black")

lines(kk.fun$stimulus, kk.fun$pscale, lwd = 2)

> -2 * kk.fun$logLik + 2 * 2
[1] 656.8796
> AIC(kk.mlds)
[1] 632.7912



Future Directions

> kk.fun2 <- mlds.function(~p[1] * (sx + abs(sx - p[2])) - p[1] * p[2], 
p = c(0.9, 0.3, 0.2), data = kk)
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> kk.fun2$par
[1] 0.5136073 0.3490738
> kk.fun2$sigma
[1] 0.1391141
> AIC(kk.mlds)
[1] 632.7912
> -2 * kk.fun2$logLik + 3 * 2
[1] 658.6734

Another example of the formula interface:



Future Directions

2.  Mixed effects models:  
We may want to introduce random effects to account for

differences in sensitivity between runs or observers. 

We have been experimenting with the lme4 package for this.

For example,

library(lme4)
Run <- factor(rep(paste("R", 1:3, sep = ""), each = 330))
kk.ix <- make.ix.mat(kk) #generate the data frame for glm
kk.lmer <- lmer(resp ~ . + (1 | Run) - 1, data = kk.ix, 


family = binomial("probit"))

 Douglas Bates (2007). lme4: Linear mixed-effects models using S4
  classes. R package version 0.99875-4.



> summary(kk.lmer)
Generalized linear mixed model fit using Laplace 
Formula: resp ~ . + (1 | Run) - 1 
   Data: kk.ix 
 Family: binomial(probit link)
   AIC   BIC logLik deviance
 630.8 684.7 -304.4    608.8
Random effects:
 Groups Name        Variance Std.Dev.
 Run    (Intercept) 0.13026  0.36092 
number of obs: 990, groups: Run, 3

Estimated scale (compare to  1 )  28.98914 

Fixed effects:
        Estimate Std. Error z value Pr(>|z|)    
stim.2   0.05725    0.14189   0.403    0.687    
stim.3   0.23181    0.15474   1.498    0.134    
stim.4   0.13198    0.16748   0.788    0.431    
stim.5   0.84308    0.18613   4.529 5.91e-06 ***
stim.6   1.71516    0.21032   8.155 3.49e-16 ***
stim.7   2.34077    0.23529   9.948  < 2e-16 ***
stim.8   2.87728    0.26501  10.857  < 2e-16 ***
stim.9   3.67165    0.30671  11.971  < 2e-16 ***
stim.10  4.43316    0.35794  12.385  < 2e-16 ***
stim.11  5.39385    0.43525  12.393  < 2e-16 ***

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

kk.mlds$stimulus

c
(0

, 
fi
x
e

f(
k
k
.l
m

e
r)

)

> AIC(kk.mlds)
[1] 632.7912


