MLDS: Maximum Likelihood Difference Scaling in R
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Psychophysics,
qu’est-ce que c'est !

A body of techniques and analytic methods to study
the relation between physical stimuli and the organism’s
(classification) behavior to infer internal states of the
organism or their organization.

Gustav Fechner (1801 - 1887) ‘



Difference scaling is a psychophysical procedure

used to estimate a perceptual scale

for stimuli distributed along a physical continuum.

Example: series along a line in tristimulus space,
What are the perceptual distances between samples!?
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Maloney & Yang, 2003



Example: VQ compressed images,

Up to what compression rate can the observer
detect no loss of image quality?

Charrier, Maloney, Cherifi & Knoblauch, submitted



Example: Correlation in scatterplots
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Difference Scaling: Experimental Procedure

From a set of p stimuli, {/1 < Io < ... <Ip},

a random quadruple, {1y, Ip; I, 14},
is chosen (w/out replacement) and presented
to the observer as in this example,

Between which pair (upper/lower) is the
perceived difference greatest!
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For a sequence of p stimuli, there are (

non-ovelapping quadruples:
210 quadruples for p = 10
330 quadruples for p = 11, etc.

At the termination of an experiment
(about |5 minutes), the data are
stored in a 5 column data frame.

6 lines of an example are shown here.

One column for the response indicating
whether the upper (1) or lower (0)

pair was chosen.

4 columns for the indices of the stimuli
in the sequence, 1 : p

=~ 3



The aim of the Maximum Likelihood Difference Scaling (MLDS)
procedure is to estimate scale values, (i1,%2,...,1%,),

that best capture the observer’s judgments of the

perceptual difference between the stimuli in each pair.
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The MLDS package, available on image: apples /
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The decision model

Given a quadruple, q = (a,b; ¢, d),
from a single trial, we assume that the observer
chooses the upper pair to be further apart
when

A(avb; C7d) — ‘wd_wC‘ o ‘wb_wa‘+€>07

where 1; are estimated scale values, € ~ N (0, 0),
and ¢ a scale factor.



Estimation of Scale Values

Maloney and Yang (2003) used a direct method for estimating
the maximum likelihood scale values,

L(¥, o) = ;ﬁl@ (5 (;lk) ) o (1 e (5 (;1k)))Rk

where

V= (¢27¢37"'7¢p—1)
5(a%) = |va — el — [t — ¢l

® is the cumulative standard Gaussian (a probit analysis)

Ry is 0/1 if the judgment is lower/upper
Y1 = 0,9, =1 for identifiability,

leaving p — 1 parameters to estimate

Maloney LT, Yang JN (2003). “Maximum Likelihood Difference Scaling.” Journal of Vision,
3(8), 573-585. URL http://www.journalofvision.org/3/8/5.



Estimation of Scale Values

The problem can also be conceptualized as a GLM.

Each level of the stimulus is treated as a covariate in the model matrix,

taking on values of 0 or + 1 in the design matrix,

depending on the presence of the stimulus in a trial and

its weight in the decision variable, with absolute value signs removed.
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For model identifiability, we drop the first column (fixing ¢; = 0

and o0 =1).



Estimation of Scale Values

> kk.ix <- make.ix.mat(kk)
> head(kk.ix)
resp stim.2 stim.3 stim.4 stim.5 stim.6 stim./ stim.8 stim.9 stim.10 stim.| |

| | I 0O -l 0 — 0 I 0 0 0
2 | 0 0O -l 0 — 0 0 I 0 0
3 | I - | 0 0 0O -l 0 I 0 0
4 | I 0 0 - | I 0 0 0 0
5 0 0O -l 0 0 — I 0 0 0 0
6 0 0 0 0 - | 0 0 I 0 0
n(EY])=Xp

> glm(resp ~ .- |, family = binomial( "probit" ), data = kk.ix)



The MLDS package

The MLDS package provides a modeling function,
mlds(), that is essentially a wrapper for either glm()
or optim(), and will enable estimation of the
perceptual scale values, given a data frame with
the previously described structure.

mlds (data, stimulus, method = "glm", 1lnk = "probit",
opt.meth = "BFGS", opt.init = NULL,
control = glm.control(maxit = 50000, epsilon = le-14),

- )

It outputs an S3 object of class ‘mlds’ which can be
examined further using several method functions:

summary, plot, predict, fitted, loglLik, AIC and boot



As a running example, we consider data sets from an
experiment in which one observer judged differences
in correlation between scatterplots for | | levels of correlation:

c(seq(0, 0.9, len = 10), 0.98)
100 points generated with:

MASS:::mvrnorm(100, mu = ¢(0, 0), Sigma = matrix(c(r, 0, 0, r), 2, 2))

Knoblauch & Maloney, submitted



The first author ran himself on 330 trials on 3 separate
days, generating data sets kkl, kk2, kk3, available in the
package. A typical trial is indicated below.

Between which pair, lower/upper, is the difference greatest?
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> library(MLDS)
> data(kkl)
> data(kk?2)
> data(kk3)

runSampleExperiment ( "DisplayOneTrial", "DefineMyScale")



The data sets have class ‘mlds.df’ that inherits from ‘data.frame’.
It differs in including two attributes, “‘stimulus” and “invord”.

> str(kkl)
Classes 'mlds.df and 'data.frame': 330 obs. of 5 variables:
$resp:int 1|O0OOITTTT1OI..

$SI :int 2676661323 ..

$S2 :int 4997792554 ...

$S3 :int 61221181075 ..

$S4 :int 843535911810...

- attr(*, "invord")= logi FALSE TRUE TRUE TRUE TRUE
TRUE ...

- attr(*, "stimulus")= num 0.0 0.1 0.2 0.3 0.4 ...

stimulus is a numeric vector of the physical stimulus levels

invord is a logical vector indicating whether on each trial
the higher scale values were on the botton or top.




It is sometimes necessary to reorder the pairs so that the higher
physical values are after the lower ones.

This is conveniently done with the SwapOrder() function, which
uses the “invord” attribute, if present.

The Rbind() function combines data sets and their attributes.

> kk <- SwapOrder( Rbind( kkl, kk2, kk3 ) )

to produce one large object.



> ( kk.mlds <- mlds(kk) )

Perceptual Scale:
o 0l 02 03 04 05 06 07 038

0.0000 -0.0454 0.0439 -0.0863 0.5682 1.4234 2.0695 2.6661 3.5527
09 098
4.4297 5.5739

sigma:

[I] 1]
> ( kk.mlds2 <- mlds(kk, method = "optim", opt.init = c(seq(0, I,len = 11),0.2)) )

Perceptual Scale:
0 Ol 02 03 04 05 06 0.7

0.00e+00 4.70e-05 1.54e-02 1.19e-07 1.10e-01 2.61e-01 3.76e-01 4.83e-01
08 09 098
6.40e-01 7.96e-01 1.00e+00

sigma:

[110.175



> plot(kk.mlds, standard.scale =TRUE,
cex = |.7,pch = 16, col = "black")

> lines(kk.mlds2, lwd = 2)
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Bootstrap Errors on mlds Scale Values

We have included a function for estimating bootstrap
standard errors on the scale values

boot.mlds(x, nsim, ...)

where X is of class ‘mlds’ and nsim is the number of
bootstrap repetitions.

1.0
The fitted probabilities are used gos-
with rbinom() to generate new %‘;
responses which are fitted using $°°°
mlds() to generate new bootstrap 8-
scale values. 5
0O 0.2
These boostrap scale values are
then used to generate the error °°°

bars (10 000 replications) 00 02 04 086



Scale validation

|. Ordering property: Observer must be able to reliably order stimuli,
(I1, 12, ...,1,) in agreement with scale values, (1,2, ..., 1¥p).
(usually not formally tested and evidently satisfied).

2. Six-point property: Given any two groups of three intervals,
(a,b,c) and (a', V', '),

—_—nmm—— ———————  ——————
a b C a b'c
if ab > a’b’ and be = b’ then ac - a'c .

Maloney and Yang (2003) proposed a resampling method for
testing the six-point property that we have implemented in MLDS.

D .H. Krantz, R. D. Luce, P. Suppes., and A. Tversky. Foundations of Measurement (Vol.
1): Additive and Polynomial Representation. Academic Press, New York, 1971.



Scale validation: Six-point test

We have written a function to estimate the likelihood of the
six-point choices from an ‘mlds’ object and then using the fitted
probabilities to generate new responses to be fit, that permit us
to compare the observed likelihood with those based on a large
number of resamplings.

kk.6pt <- simu.6pt(kk.mlds, nsim = 10000)

Histogram of kk.6pt$boot.samp

returns the six-point likelihood for the
observed data as well as the 10 000 §-
resampled likelihoods.
Lept = —425 5 2
p=0.8 - .
o - — | -

I I I I
—-600 -500 -400 -300

log(Likelihood)



Future Directions

|. Formula interface:

The current fitting procedure requires the estimation of
p — 1 parameters. The fitted scale may suggest a simpler
parametric form with fewer parameters.

kk.fun <- mlds.function(~sx"p, p = c(4, 0.2), data = kk)

takes a one-sided formula with parameters, p and sigma,
yielding only two parameters.

1.0

plot(kk.mlds, standard.scale =TRUE,
cex = |.7, pch = 16, col = "black")

0.8

0.6

lines(kk.fun$stimulus, kk.fun$pscale, Iwd = 2)

x$pscale/x$pscalelll]
0.4

> -2 * kk.fun$logLik + 2 * 2
[17 656.8796

> AIC(I(kaCIS) 0.0 012 014 O!6 0T8 1!0
[ I ] 632.79 I 2 x$stimulus

0.2

0.0




Future Directions

Another example of the formula interface:

> kk.fun2 <- mlds.function(~p[I] * (sx + abs(sx - p[2])) - p[I] * p[2],
p = ¢(0.9,0.3,0.2), data = kk)

1.0

> kk.fun2$par

[1]0.5136073 0.3490738

> kk.fun2$sigma
[1]10.1391141

> AIC(kk.mlds)

[1] 632.7912

> -2 * kk.fun2$logLik + 3 * 2
[1] 658.6734

0.6 0.8
[ )

x$pscale/x$pscalelll]
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Future Directions

2. Mixed effects models:
We may want to introduce random effects to account for
differences in sensitivity between runs or observers.

We have been experimenting with the Ime4 package for this.

For example,

library(lme4)

Run <- factor(rep(paste("R", 1:3, sep = ""), each = 330))
kk.1x <- make.ix.mat(kk) #generate the data frame for glm
kk.1lmer <- Imer(resp ~ . + (1 | Run) - 1, data = kk.1ix,

family = binomial("probit"))

Douglas Bates (2007). Ime4: Linear mixed-effects models using S4
classes. R package version 0.99875-4.



> summary(kk.Imer)
Generalized linear mixed model fit using Laplace
Formula:resp ~ .+ (I | Run) - |

Data: kk.ix
Family: binomial(probit link)

AIC BIC logLik deviance > AlIC(kk.mlds)
630.8 684.7 -304.4 608.8 [1]632.7912
Random effects:

Groups Name Variance Std.Dev.

Run (Intercept) 0.13026 0.36092
number of obs: 990, groups: Run, 3

Estimated scale (compare to | ) 28.98914

Fixed effects:

Estimate Std. Error z value Pr(>|z|) /
stim.2 0.05725 0.14189 0.403 0.687 < /
stim.3 0.23181 0.15474 1.498 0.134
stim.4 0.13198 0.16748 0.788 0.431
stim.5 0.84308 0.18613 4.529 5.91e-06 ***
stim.6 1.71516 0.21032 8.155 3.49e-|6 ***
stim.7 2.34077 0.23529 9.948 < 2e-16 ***
stim.8 2.87728 0.26501 10.857 < 2e-16 *** J/
stim.9 3.67165 0.30671 11.971 <2e-16 *** o - ,/-/T\- | | | |

stim.10 443316 0.35794 12.385 < 2e-|6 *** 00 02 04 06 08 10
stim.l11 5.39385 0.43525 12.393 < 2e-|6 *** kk.mids$stimulus

c(0, fixef(kk.Imer))




