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Background

I I have been using R for 11 years for introductory statistics.
I 5 years ago we started to revise our year-one introductory

curriculum: Calculus and Statistics.
I Calculus and Statistics topics were entirely unrelated before

this.
I Major theme of the revision was applied multivariate modeling.

This ties together the calculus and statistics closely.

I We wanted a computing platform that could support both
Calculus and Statistics.

I There is still resistence from faculty who do not appreciate the
value of an integrated approach and who want to use a
package that they are familiar with: Mathematica, Excel,
SPSS, STATA
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Applied Calculus: Goals

I Intended for students who do not plan to take a multi-course
calculus sequence.

I Give them the math they need to work in their field of
interest, rather than the foundation for future math courses
they will never take.
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Applied Calculus: Topics

I Change: ordinary, partial, and directional derivatives.

I Optimization: including fitting and contrained optim.
I Modeling:

I function building blocks: linear, polynomial, exp, sin,
power-law

I functions of multiple variables
I difference & differential equations & the phase plane
I units and dimensions.

I Example: polynomials to 2nd order in two variables, e.g.,
bicycle speed as function of hill steepness and gear. There is
an interaction between steepness and gear.
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Introduction to Statistical Modeling: Goals

Give students the conceptual understanding and specific skills they
need to address real statistical issues in their fields of interest.

I Recognize explicitly that “client” fields routinely work with
multiple variables.

I ISM provides the foundations for doing so.

I Tries to provide a unified framework that applies to many
different fields using different methods and terminology.

I Paradox of the conventional course:
I It assumes that we need to teach students about t-tests, BUT

...
I ... absurdly, that they can figure out the multivariate stuff on

their own.
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Introduction to Statistical Modeling: Topics

I Linear models: interpretation of terms (incl. interaction
terms), meaning of coefficients, fitting

I Issues of collinearity: Simpson’s paradox, degrees of freedom,
etc.

I Basic inferential techniques:
I Bootstrapping and simulation to develop concepts
I “Black box” normal theory results
I Anova

I Theory is presented in a geometrical framework.
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Who takes these courses?

I More than 100 students each year (out of a class size of 450).

I Calculus and statistics required for the biology major.

I Economics majors take it before econometrics.

I Math majors are required to take statistics (very unusual!).
They take it after linear algebra.

I About 2/3 of calculus students have had some calculus in
high school.

I About 1/3 of statistics students have had an AP-type
statistics course in high school.
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What Makes R Effective?

I Free, multi-platform

I Powerful & integrated with graphics.

I Command-line based & modeling language

I Extensible, programmable

I Functional style, incl. lazy evaluation. This allows sensible
command-line interfaces.
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Example from Calculus: Functions
What students need to know about functions:

I Functions take one or more arguments and return a value.

I Definition of a function describes the rule.

I Application of a function to arguments produces the value.

R supports definition with little syntactical overhead

f = function(x){ x^2 + 2*x }

and application is very easy

> f(3)
[1] 15

R emphasizes that the function itself is a thing, distinct from its
application:

> f
function(x){ x^2 + 2*x }
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Functions: What’s missing

Simple support for multivariate functions with vector arguments,
e.g.
It would be nice to be able to say,

f = function([x,y,z]){ x^2 + 2*x*y + sqrt(z)*x }

Currently, I have to say

f = function(v){ v[1]^2 + 2*v[1]*v[2] + sqrt(v[3])*v[1] }

This isn’t terrible, but it’s hard to read and introduces more syntax
and concepts (e.g., indexing)
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Vectors: What’s Missing?

I Simple, concise operations for assembling matrices. It’s ugly
to say:

> M = cbind( rbind(1,2,3), rbind(6,5,4) )
[,1] [,2]

[1,] 1 6
[2,] 2 5
[3,] 3 4

I Matlab-like consistency. If you extract a column from a
matrix, it should be a column. NOT

> M[,1]
[1] 1 2 3
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Example from Calculus: Differentiation

What students need to know about the derivative operator.

I Takes a function as input, produces a function as output.

I The output function gives the slope of the input function at
any point.

I NOT PRIMARILY:
I Algebraic algorithms for transforms: e.g., xn → nxn−1

I The theory of the infinitesimal.

A simple differentiation operator:

D = function(f,delta=.000001){
function(x){ (f(x+delta) - f(x-delta))/(2*delta)} }
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Using D
> f = function(x){ x^2 + 2*x }
> plot(f, 0, 10)

> plot(D(f), 0, 10)
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Why not the built-in D?
I It doesn’t reinforce the notion of an operator on functions.
I It’s too complicated.

> g = deriv( ~ sin( 3*x), ’x’)
> g
expression({

.expr1 <- 3 * x; .value <- sin(.expr1)

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- cos(.expr1) * 3; attr(.value, "gradient") <- .grad

.value})
> x = 7
> eval(g)
[1] 0.8366556
attr(,"gradient")

x
[1,] -1.643188

I need to understand better the relationship between functions and
formulas, and operations on formulas for extracting structure.
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Example: Fitting Linear Models

R makes this amazingly easy.

> g = read.csv(’galton-heights.csv’)
family father mother sex height nkids

1 1 78.5 67.0 M 73.2 4
2 1 78.5 67.0 F 69.0 4
...
6 2 75.5 66.5 M 72.5 4
and so on

> lm( height ~ sex + father, data=g)
(Intercept) sexM father

34.4611 5.1760 0.4278
> lm( height ~ sex + father + mother, data=g)
(Intercept) sexM father mother

15.3448 5.2260 0.4060 0.3215
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Operating on the results of linear modeling

Sum of squares relationship:

> sum( g$height^2)
[1] 4013892> m1 = lm( height ~ sex + father, data=g)
> sum( m1$fitted^2) + sum( m1$resid^2)
[1] 4013892
> m2 = lm( height ~ sex + father + mother, data=g)
> sum( m2$fitted^2) + sum( m2$resid^2)
[1] 4013892

Orthogonality of fitted and residual

> sum( m2$fitted * m2$resid )
[1] 4.239498e-12 -- essentially 0
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Modeling: What’s missing

Syntax is not forgiving of small mistakes:

I Mis-spelled column name:

> sum( g$heights )
[1] 0
> sum( g$height )
[1] 59951.1

I Named argument confounding. You flip 50 fair coins. Where’s
the 10th percentile on the number of heads?

> qbinom( .10, size=50, prob=.5)
[1] 20
> qbinom( .10, size=50, p=.5)
[1] 5
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Standard summaries are very easy

> m3 = lm( height ~ sex + father + mother + nkids, data=g)
> summary(m3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.18771 2.79387 5.794 9.52e-09
sexM 5.20995 0.14422 36.125 < 2e-16
father 0.39831 0.02957 13.472 < 2e-16
mother 0.32096 0.03126 10.269 < 2e-16
nkids -0.04382 0.02718 -1.612 0.107
> anova(m3)

Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 4002377 4002377 8.6392e+05 <2e-16
sex 1 5875 5875 1.2680e+03 <2e-16
father 1 1001 1001 2.1609e+02 <2e-16
mother 1 490 490 1.0581e+02 <2e-16
nkids 1 12 12 2.5992e+00 0.1073
Residuals 893 4137 5

Note: I added the Intercept term to the Anova table. R lets me
do this.
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Extensibility is important to teaching

Example 1: the t-test, Anova, and regression.
I want to show these are different aspects of the same thing.

> t.test(g$height)
t = 558.37, df = 897, p-value < 2.2e-16
> summary( lm( height ~ 1, data=g ) )

Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.7607 0.1196 558.4 <2e-16
> anova( lm( height ~ 1, data=g ) )

Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 4002377 4002377 311777 < 2.2e-16
Residuals 897 11515 13
> sqrt(311777)
[1] 558.37
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Similarly with the 2-sample t-test

> t.test( g$height ~ g$sex, var.equal=TRUE)
t = -30.5481, df = 896, p-value < 2.2e-16
> summary(lm( height ~ sex, data=g))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 64.1102 0.1206 531.70 <2e-16
sexM 5.1187 0.1676 30.55 <2e-16
> anova(lm( height ~ sex, data=g))

Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 4002377 4002377 635783.45 < 2.2e-16
sex 1 5875 5875 933.18 < 2.2e-16
Residuals 896 5640 6
> sqrt(933.18)
[1] 30.54800
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Extensibility is important: Example 2

How Anova Works.
Let’s add k random, junky terms to a model and see how R2 or
the fitted sum of squares changes.
rand(k) notation added to modeling language.

Model R2 ∆R2

footwidth~1+sex+footlength 0.4596
footwidth~1+sex+footlength+rand(1) 0.4824 0.02284
footwidth~1+sex+footlength+rand(2) 0.4911 0.00873
footwidth~1+sex+footlength+rand(3) 0.4941 0.00297

... and so on ...
footwidth~1+sex+footlength+rand(34) 0.9676 0.00365
footwidth~1+sex+footlength+rand(35) 0.9820 0.01440
footwidth~1+sex+footlength+rand(36) 1.0000 0.01799
footwidth~1+sex+footlength+rand(37) 1.0000 0.00000
footwidth~1+sex+footlength+rand(38) 1.0000 0.00000
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The Modeling Walk
A model with 3 model terms fit to data with 39 cases.
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Resampling

Resampling itself is a conceptually simple operation.

> resample( c(1,2,3), 10)
[1] 1 3 1 1 3 3 3 1 1 2

> resample( g, 5)
family father mother sex height nkids

282 70 70.0 65.0 F 62.5 5
74 20 72.7 69.0 F 66.0 8
149 40 71.0 66.0 M 71.0 5
282.1 70 70.0 65.0 F 62.5 5
61 17 73.0 64.5 F 66.5 6
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Repetition is conceptually simple, but ...

... generally hard for neophytes to implement on the computer.
Not in R!
Example: Roll three dice and add them.

> sum( resample( 1:6, 3) )
[1] 8

Now do this 50 times:

> repeattrials( sum( resample( 1:6, 3) ), 50 )
[1] 14 6 12 10 7 13 13 11 13 10 11 6 7 5 16 14 11 13

[19] 16 7 7 9 6 10 8 10 7 15 10 14 12 14 8 11 4 10
[37] 14 10 12 10 8 12 12 8 7 4 17 16 10 11
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Bootstrapping

Bootstrapping is hardly ever done in introductory statistics courses,
even though it is so simple conceptually. This is because there is
little computational support beyond the black-box type.

> mean( resample( g$height ) )
[1] 66.64577
> mean( resample( g$height ) )
[1] 66.76303
> s = repeattrials(
mean( resample( g$height ) ), 500 )

> hist(s)
> quantile( s, c(0.025, 0.975) )

2.5% 97.5%
66.52771 66.97620
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A command-line interface has big advantages
It allows us to put things together in creative ways.
Example 1: Confidence intervals on model coefficients.

> lm( height ~ sex + nkids, data=g )
(Intercept) sexM nkids

64.8013 5.0815 -0.1095
> lm( height ~ sex + nkids, data=resample(g) )
(Intercept) sexM nkids

64.73765 5.15831 -0.09852
> s = repeattrials(lm( height ~ sex + nkids,

data=resample(g) )$coef, 1000)
> head(s)
(Intercept) sexM nkids

1 65.01683 5.323394 -0.1664674
2 64.64250 5.262300 -0.1005491
3 64.75436 5.113593 -0.1079453
and so on

> quantile( s$nkids, c(0.025, 0.975))
2.5% 97.5%

-0.16115645 -0.03391969
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Resampling: Example 2
Hypothesis testing on single variables:

> lm( height ~ sex + nkids, data=g )
(Intercept) sexM nkids

64.8013 5.0815 -0.1095
> lm( height ~ sex + resample(nkids), data=g )

(Intercept) sexM resample(nkids)
64.00688 5.12503 0.01628

> s = repeattrials(lm( height ~ sex + resample(nkids),
data=g )$coef, 1000)

> head(s)
(Intercept) sexM resample(nkids)

1 63.99812 5.117672 0.01821168
2 64.18064 5.119589 -0.01154208

and so on
> quantile( s[,3], c(0.025, 0.975))

2.5% 97.5%
-0.05690810 0.05361429

Our observed value of −0.1095 is outside of this range.
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Resampling: Example 3
Power/Sample-size demonstration. If the world were like our
sample, how likely is a sample of 100 people to demonstrate that
family size (nkids) is related to height?

# Extract the p-value on nkids
> anova( lm(height ~ sex + nkids, data=g))[3,5]
[1] 0.0004454307
# Simulate a sample of size 100
> anova( lm(height ~ sex + nkids, data=resample(g,100)))[3,5]
[1] 0.2743715
> s = repeattrials(anova( lm(height ~ sex + nkids, data=resample(g,100)))[3,5], 1000)
> head(s)
[1] 0.001870581 0.498089249 0.801042654 0.286201801
[5] 0.055200572 0.198855304 and so on
> table( s < .05 )
FALSE TRUE

774 226 # power is 23%
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Distribution of p-values
Under the null:

> s = repeattrials(
anova( lm(height ~ sex + resample(nkids), data=g))[3,5],
1000)
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It would be nice to have a GUI that can support this kind of thing.
How?
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GUIs are Important

Examples from our courses:

I Euler method of integration.

I Visualizing dynamics on the phase plane.

I Linear combinations of vectors.

future simulating causal networks.
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A graphical approach to integration

The logistic-growth
system:
ẋ = rx(1− x/K )

I The differential
equation describes
local dynamics.

I Growth rate
changes with x .

I Accumulate small
increments.
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It’s also calculus to teach the
phenomenology of differential
equations:

I equilibrium and stability

I oscillation

Computers can solve the DEs,
so solution techniques are no
longer central.
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Fitting Linear Models

A B C

3 -3 2
2 4 0

Fit the model A ~ B + C - 1
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Local Requirements for Adopting R

I A locally accessible expert.

I Concise instructions on how to do basic things. Like Kermit
Sigmon’s Matlab Primer.

I Things are vastly better than they once were, but still we
don’t exploit the 80/20 rule:
20% of the knowledge will get you 80% of the way there!
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Summary

I GUIs are important, but ...

I We should embrace R’s strength, an extensible command-line
interface and syntax.
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