Using R for Introductory Calculus and Statistics

Daniel Kaplan

Macalester College

August 9, 2007

э

Background

- ▶ I have been using R for 11 years for introductory statistics.
- 5 years ago we started to revise our year-one introductory curriculum: Calculus and Statistics.
 - Calculus and Statistics topics were entirely unrelated before this.
 - Major theme of the revision was applied multivariate modeling. This ties together the calculus and statistics closely.
- We wanted a computing platform that could support both Calculus and Statistics.
- There is still resistence from faculty who do not appreciate the value of an integrated approach and who want to use a package that they are familiar with: Mathematica, Excel, SPSS, STATA

通 と く ヨ と く ヨ と

- Intended for students who do not plan to take a multi-course calculus sequence.
- Give them the math they need to work in their field of interest, rather than the foundation for future math courses they will never take.

Applied Calculus: Topics

- Change: ordinary, partial, and directional derivatives.
- Optimization: including fitting and contrained optim.
- Modeling:
 - function building blocks: linear, polynomial, exp, sin, power-law
 - functions of multiple variables
 - difference & differential equations & the phase plane
 - units and dimensions.
- Example: polynomials to 2nd order in two variables, e.g., bicycle speed as function of hill steepness and gear. There is an interaction between steepness and gear.

通 と イ ヨ と イ ヨ と

Introduction to Statistical Modeling: Goals

Give students the conceptual understanding and specific skills they need to address real statistical issues in their fields of interest.

- Recognize explicitly that "client" fields routinely work with multiple variables.
- ISM provides the foundations for doing so.
- Tries to provide a unified framework that applies to many different fields using different methods and terminology.
- Paradox of the conventional course:
 - It assumes that we need to teach students about t-tests, BUT
 - ... absurdly, that they can figure out the multivariate stuff on their own.

. . .

Introduction to Statistical Modeling: Topics

- Linear models: interpretation of terms (incl. interaction terms), meaning of coefficients, fitting
- Issues of collinearity: Simpson's paradox, degrees of freedom, etc.
- Basic inferential techniques:
 - Bootstrapping and simulation to develop concepts
 - "Black box" normal theory results
 - Anova
- Theory is presented in a geometrical framework.

Who takes these courses?

- ▶ More than 100 students each year (out of a class size of 450).
- Calculus and statistics required for the biology major.
- Economics majors take it before econometrics.
- Math majors are required to take statistics (very unusual!). They take it after linear algebra.
- About 2/3 of calculus students have had some calculus in high school.
- About 1/3 of statistics students have had an AP-type statistics course in high school.

What Makes R Effective?

- Free, multi-platform
- Powerful & integrated with graphics.
- Command-line based & modeling language
- Extensible, programmable
- Functional style, incl. lazy evaluation. This allows sensible command-line interfaces.

Example from Calculus: Functions

What students need to know about functions:

- Functions take one or more arguments and return a value.
- Definition of a function describes the rule.
- ► **Application** of a function to arguments produces the value. R supports definition with little syntactical overhead

```
f = function(x) \{ x^2 + 2*x \}
```

and application is very easy

> f(3) [1] 15

R emphasizes that the function itself is a thing, distinct from its application:

> f
function(x){ x^2 + 2*x }

Functions: What's missing

Simple support for multivariate functions with vector arguments, e.g.

It would be nice to be able to say,

f = function([x,y,z]){ x^2 + 2*x*y + sqrt(z)*x }

Currently, I have to say

f = function(v){ v[1]^2 + 2*v[1]*v[2] + sqrt(v[3])*v[1] }

This isn't terrible, but it's hard to read and introduces more syntax and concepts (e.g., indexing)

Vectors: What's Missing?

 Simple, concise operations for assembling matrices. It's ugly to say:

```
> M = cbind( rbind(1,2,3), rbind(6,5,4) )
      [,1] [,2]
[1,] 1 6
[2,] 2 5
[3,] 3 4
```

MATLAB-like consistency. If you extract a column from a matrix, it should be a column. NOT
 > M[,1]
 [1] 1 2 3

Example from Calculus: Differentiation

What students need to know about the derivative operator.

- ► Takes a function as input, produces a function as output.
- The output function gives the slope of the input function at any point.
- NOT PRIMARILY:
 - Algebraic algorithms for transforms: e.g., $x^n \rightarrow nx^{n-1}$
 - The theory of the infinitesimal.

A simple differentiation operator:

D = function(f,delta=.000001){
 function(x){ (f(x+delta) - f(x-delta))/(2*delta)} }

Using D

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Using D

- > plot(f, 0, 10)
- > plot(D(f), 0, 10)

æ

э

Using D

- > plot(f, 0, 10)
- > plot(D(f), 0, 10)

Numerical pathology of (D(D(f)))
> plot(D(D(f)), 0, 10)

Why not the built-in D?

- It doesn't reinforce the notion of an operator on functions.
- It's too complicated.

```
> g = deriv( \sim \sin(3*x), 'x')
> g
expression({
    .expr1 <- 3 * x; .value <- sin(.expr1)</pre>
    .grad <- array(0, c(length(.value), 1), list(NULL,</pre>
    .grad[, "x"] <- cos(.expr1) * 3; attr(.value, "grad
    .value})
> x = 7
> eval(g)
[1] 0.8366556
attr(,"gradient")
              х
[1.] -1.643188
```

Why not the built-in D?

- It doesn't reinforce the notion of an operator on functions.
- It's too complicated.

```
> g = deriv( \sim \sin(3*x), 'x')
> g
expression({
    .expr1 <- 3 * x; .value <- sin(.expr1)</pre>
    .grad <- array(0, c(length(.value), 1), list(NULL,</pre>
    .grad[, "x"] <- cos(.expr1) * 3; attr(.value, "grad
    .value})
> x = 7
> eval(g)
[1] 0.8366556
attr(,"gradient")
              х
[1,] -1.643188
```

I need to understand better the relationship between functions and formulas, and operations on formulas for extracting structure * = \circ

Example: Fitting Linear Models

R makes this amazingly easy.

> g = read.csv('galton-heights.csv') family father mother sex height nkids 1 78.5 67.0 M 73.2 1 4 2 1 78.5 67.0 F 69.0 4 . . . 6 2 75.5 66.5 M 72.5 4 and so on > lm(height ~ sex + father, data=g) (Intercept) sexM father 34,4611 5.1760 0.4278 > lm(height ~ sex + father + mother, data=g) (Intercept) sexM father mother 15.3448 5.2260 0.4060 0.3215 Operating on the results of linear modeling

Sum of squares relationship:

```
> sum( g$height^2)
[1] 4013892> m1 = lm( height ~ sex + father, data=g)
> sum( m1$fitted^2) + sum( m1$resid^2)
[1] 4013892
> m2 = lm( height ~ sex + father + mother, data=g)
> sum( m2$fitted^2) + sum( m2$resid^2)
[1] 4013892
```

Orthogonality of fitted and residual

```
> sum( m2$fitted * m2$resid )
[1] 4.239498e-12 -- essentially 0
```

Modeling: What's missing

Syntax is not forgiving of small mistakes:

Mis-spelled column name:

```
> sum( g$heights )
[1] 0
> sum( g$height )
[1] 59951.1
```

Named argument confounding. You flip 50 fair coins. Where's the 10th percentile on the number of heads?

```
> qbinom( .10, size=50, prob=.5)
[1] 20
> qbinom( .10, size=50, p=.5)
[1] 5
```

• • = • • = •

Standard summaries are very easy

> m3 = lm(height ~ sex + father + mother + nkids, data=g)
> summary(m3)

	Est	imate Sto	d. Error	t value	Pr(> t)
(Intercept)	16.3	18771	2.79387	5.794	9.52e-09
sexM	5.20995		0.14422	36.125	< 2e-16
father	0.39831		0.02957	13.472	< 2e-16
mother	0.32096		0.03126	10.269	< 2e-16
nkids	-0.04382		0.02718	-1.612	0.107
> anova(m3)					
	Df	Sum Sq	Mean Sq	F val	Lue Pr(>F)
(Intercept)	1	4002377	4002377	8.6392e+	+05 <2e-16
sex	1	5875	5875	1.2680e+	+03 <2e-16
father	1	1001	1001	2.1609e+	+02 <2e-16
mother	1	490	490	1.0581e+	+02 <2e-16
nkids	1	12	12	2.5992e+	00 0.1073
Residuals	893	4137	5		

Note: Ladded the Intercent term to the A NOVA table R lets me Slide 18/35 Daniel Kaplan Using R for Introductory Calculus and Statistics

Extensibility is important to teaching

Example 1: the t-test, ANOVA, and regression. I want to show these are different aspects of the same thing.

```
> t.test(g$height)
t = 558.37, df = 897, p-value < 2.2e-16
> summary( lm( height ~ 1, data=g ) )
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.7607 0.1196 558.4 <2e-16
> anova( lm( height ~ 1, data=g ) )
            Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 4002377 4002377 311777 < 2.2e-16
Residuals 897 11515
                           13
> sqrt(311777)
[1] 558.37
```

Similarly with the 2-sample t-test

```
> t.test( g$height ~ g$sex, var.equal=TRUE)
t = -30.5481, df = 896, p-value < 2.2e-16
> summary(lm( height ~ sex, data=g))
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 64.1102 0.1206 531.70 <2e-16
sexM 5.1187 0.1676 30.55 <2e-16
> anova(lm( height ~ sex, data=g))
           Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 4002377 4002377 635783.45 < 2.2e-16
            1
                5875 5875 933.18 < 2.2e-16
sex
Residuals 896
                5640
                           6
> sqrt(933.18)
[1] 30.54800
```

Extensibility is important: Example 2

How ANOVA Works.							
Let's add k random, junky terms to a model and see how R^2 or							
the fitted sum of squares changes.							
rand(k) notation added to modeling language.							
Model	R^2	ΔR^2					
footwidth~1+sex+footlength	0.4596						
footwidth~1+sex+footlength+rand(1)	0.4824	0.02284					
footwidth~1+sex+footlength+rand(2)	0.4911	0.00873					
<pre>footwidth~1+sex+footlength+rand(3)</pre>	0.4941	0.00297					
and so on							
footwidth~1+sex+footlength+rand(34)	0.9676	0.00365					
footwidth~1+sex+footlength+rand(35)	0.9820	0.01440					
footwidth~1+sex+footlength+rand(36)	1.0000	0.01799					
footwidth~1+sex+footlength+rand(37)	1.0000	0.00000					
footwidth~1+sex+footlength+rand(38)	1.0000	0.00000					

э

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

The Modeling Walk

A model with 3 model terms fit to data with 39 cases.

R² versus m

Resampling

Resampling itself is a conceptually simple operation.

```
> resample( c(1,2,3), 10)
[1] 1 3 1 1 3 3 3 1 1 2
```

> resample(g, 5)										
	family	father	mother	sex	height	nkids				
282	70	70.0	65.0	F	62.5	5				
74	20	72.7	69.0	F	66.0	8				
149	40	71.0	66.0	М	71.0	5				
282.	1 70	70.0	65.0	F	62.5	5				
61	17	73.0	64.5	F	66.5	6				

э

Repetition is conceptually simple, but ...

... generally hard for neophytes to implement on the computer. Not in R! Example: Roll three dice and add them.

```
> sum( resample( 1:6, 3) )
[1] 8
```

Now do this 50 times:

> repeattrials(sum(resample(1:6, 3)), 50)
[1] 14 6 12 10 7 13 13 11 13 10 11 6 7 5 16 14 11 13
[19] 16 7 7 9 6 10 8 10 7 15 10 14 12 14 8 11 4 10
[37] 14 10 12 10 8 12 12 8 7 4 17 16 10 11

Bootstrapping

Bootstrapping is hardly ever done in introductory statistics courses, even though it is so simple conceptually. This is because there is little computational support beyond the black-box type.

A command-line interface has big advantages

It allows us to put things together in creative ways. Example 1: Confidence intervals on model coefficients.

> lm(height ~ sex + nkids, data=g) (Intercept) sexM nkids 64.8013 5.0815 -0.1095 > lm(height ~ sex + nkids, data=resample(g)) (Intercept) sexM nkids 64.73765 5.15831 -0.09852 > s = repeattrials(lm(height ~ sex + nkids, data=resample(g))\$coef, 1000) > head(s) (Intercept) sexM nkids 65.01683 5.323394 -0.1664674 1 2 64.64250 5.262300 -0.1005491 3 64.75436 5.113593 -0.1079453 and so on

> quantile(s\$nkids, c(0.025, 0.975))

Slide 26/35

Resampling: Example 2

Hypothesis testing on single variables:

> lm(height ~ sex + nkids, data=g) (Intercept) sexM nkids 64.8013 5.0815 -0.1095 > lm(height ~ sex + resample(nkids), data=g) (Intercept) sexM resample(nkids) 64.00688 5.12503 0.01628 > s = repeattrials(lm(height ~ sex + resample(nkids), data=g)\$coef, 1000) > head(s) (Intercept) sexM resample(nkids) 1 63.99812 5.117672 0.01821168 2 64.18064 5.119589 -0.01154208 and so on > quantile(s[,3], c(0.025, 0.975)) 2.5% 97.5% -0.05690810 0.05361429 Slide 27/35 Daniel Kaplan Using R for Introductory Calculus and Statistics

Resampling: Example 3

Power/Sample-size demonstration. If the world were like our sample, how likely is a sample of 100 people to demonstrate that family size (nkids) is related to height?

```
# Extract the p-value on nkids
> anova( lm(height ~ sex + nkids, data=g))[3,5]
[1] 0.0004454307
# Simulate a sample of size 100
> anova( lm(height ~ sex + nkids, data=resample(g,100)))[3
[1] 0.2743715
> s = repeattrials(anova( lm(height ~ sex + nkids, data=res
> head(s)
[1] 0.001870581 0.498089249 0.801042654 0.286201801
[5] 0.055200572 0.198855304 and so on
> table( s < .05 )
FALSE TRUE
 774 226 # power is 23%
```

・ 同 ト ・ ヨ ト ・ ヨ ト

Distribution of p-values

Under the null:

> s = repeattrials(
 anova(lm(height ~ sex + resample(nkids), data=g))[3,5],
 1000)

Slide 29/35

Examples from our courses:

- Euler method of integration.
- Visualizing dynamics on the phase plane.
- Linear combinations of vectors.

future simulating causal networks.

A graphical approach to integration

The logistic-growth system:

 $\dot{x} = rx(1 - x/K)$

- The differential equation describes local dynamics.
- Growth rate changes with x.
- Accumulate small increments.

It's also calculus to teach the phenomenology of differential equations:

- equilibrium and stability
- oscillation

Computers can solve the DEs, so solution techniques are no longer central.

Fitting Linear Models

Fitting Linear Models

Fitting Linear Models

Local Requirements for Adopting R

- A locally accessible expert.
- ► Concise instructions on how to do basic things. Like Kermit Sigmon's MATLAB Primer.
- Things are vastly better than they once were, but still we don't exploit the 80/20 rule: 20% of the knowledge will get you 80% of the way there!

Summary

GUIs are important, but ...

We should embrace R's strength, an extensible command-line interface and syntax.

Image: Image:

Summary

- GUIs are important, but ...
- We should embrace R's strength, an extensible command-line interface and syntax.