Using R for Introductory Calculus and Statistics

Daniel Kaplan
Macalester College

August 9, 2007

Background

- I have been using R for 11 years for introductory statistics.
- 5 years ago we started to revise our year-one introductory curriculum: Calculus and Statistics.
- Calculus and Statistics topics were entirely unrelated before this.
- Major theme of the revision was applied multivariate modeling. This ties together the calculus and statistics closely.
- We wanted a computing platform that could support both Calculus and Statistics.
- There is still resistence from faculty who do not appreciate the value of an integrated approach and who want to use a package that they are familiar with: Mathematica, Excel, SPSS, STATA

Applied Calculus: Goals

- Intended for students who do not plan to take a multi-course calculus sequence.
- Give them the math they need to work in their field of interest, rather than the foundation for future math courses they will never take.

Applied Calculus: Topics

- Change: ordinary, partial, and directional derivatives.
- Optimization: including fitting and contrained optim.
- Modeling:
- function building blocks: linear, polynomial, exp, sin, power-law
- functions of multiple variables
- difference \& differential equations \& the phase plane
- units and dimensions.
- Example: polynomials to 2nd order in two variables, e.g., bicycle speed as function of hill steepness and gear. There is an interaction between steepness and gear.

Introduction to Statistical Modeling: Goals

Give students the conceptual understanding and specific skills they need to address real statistical issues in their fields of interest.

- Recognize explicitly that "client" fields routinely work with multiple variables.
- ISM provides the foundations for doing so.
- Tries to provide a unified framework that applies to many different fields using different methods and terminology.
- Paradox of the conventional course:
- It assumes that we need to teach students about t-tests, BUT
- ... absurdly, that they can figure out the multivariate stuff on their own.

Introduction to Statistical Modeling: Topics

- Linear models: interpretation of terms (incl. interaction terms), meaning of coefficients, fitting
- Issues of collinearity: Simpson's paradox, degrees of freedom, etc.
- Basic inferential techniques:
- Bootstrapping and simulation to develop concepts
- "Black box" normal theory results
- Anova
- Theory is presented in a geometrical framework.

Who takes these courses?

- More than 100 students each year (out of a class size of 450).
- Calculus and statistics required for the biology major.
- Economics majors take it before econometrics.
- Math majors are required to take statistics (very unusual!). They take it after linear algebra.
- About $2 / 3$ of calculus students have had some calculus in high school.
- About $1 / 3$ of statistics students have had an AP-type statistics course in high school.

What Makes R Effective?

- Free, multi-platform
- Powerful \& integrated with graphics.
- Command-line based \& modeling language
- Extensible, programmable
- Functional style, incl. lazy evaluation. This allows sensible command-line interfaces.

Example from Calculus: Functions

What students need to know about functions:

- Functions take one or more arguments and return a value.
- Definition of a function describes the rule.
- Application of a function to arguments produces the value.
R supports definition with little syntactical overhead
$f=$ function(x) $\left\{x^{\wedge} 2+2 * x\right\}$
and application is very easy
$>\mathrm{f}(3)$
[1] 15
R emphasizes that the function itself is a thing, distinct from its application:
> f
function(x) $\left\{x^{\wedge} 2+2 * x\right\}$

Functions: What's missing

Simple support for multivariate functions with vector arguments, e.g.

It would be nice to be able to say,
$f=\operatorname{function}([x, y, z])\left\{x^{\wedge} 2+2 * x * y+\operatorname{sqrt}(z) * x\right\}$
Currently, I have to say
$\mathrm{f}=$ function(v)\{ $\mathrm{v}[1] \wedge 2+2 * \mathrm{v}[1] * \mathrm{v}[2]+\operatorname{sqrt}(\mathrm{v}[3]) * \mathrm{v}[1]\}$
This isn't terrible, but it's hard to read and introduces more syntax and concepts (e.g., indexing)

Vectors: What's Missing?

- Simple, concise operations for assembling matrices. It's ugly to say:
> $M=\operatorname{cbind}(\operatorname{rbind}(1,2,3), \operatorname{rbind}(6,5,4))$

$$
[, 1][, 2]
$$

[1,] 1
[2,] 2 5
[3,] 3

- Matlab-like consistency. If you extract a column from a matrix, it should be a column. NOT
> M[,1]
[1] 123

Example from Calculus: Differentiation

What students need to know about the derivative operator.

- Takes a function as input, produces a function as output.
- The output function gives the slope of the input function at any point.
- NOT PRIMARILY:
- Algebraic algorithms for transforms: e.g., $x^{n} \rightarrow n x^{n-1}$
- The theory of the infinitesimal.

A simple differentiation operator:

```
D = function(f,delta=.000001){
    function(x){ (f(x+delta) - f(x-delta))/(2*delta)} }
```


Using D

$>f=$ function $(x)\left\{x^{\wedge} 2+2 * x\right\}$
> plot (f, 0, 10)

Using D

$>f=$ function $(x)\left\{x^{\wedge} 2+2 * x\right\}$
> plot (f, 0, 10)
$>\operatorname{plot}(\mathrm{D}(\mathrm{f}), 0,10)$

Using D

$>f=$ function $(x)\left\{x^{\wedge} 2+2 * x\right\}$
$>\operatorname{plot}(f, 0,10)$
$>\operatorname{plot}(\mathrm{D}(\mathrm{f}), 0,10)$

Numerical pathology of (D(D(f)))
> plot(D(D(f)), 0, 10)

Why not the built-in D?

- It doesn't reinforce the notion of an operator on functions.
- It's too complicated.
$>\mathrm{g}=\operatorname{deriv}\left(\sim^{\sim} \sin (3 * \mathrm{x})\right.$, ' x ')
$>g$
expression(\{
.expr1 <- 3 * x; .value <- sin(.expr1)
.grad <- array(0, c(length(.value), 1), list(NULL, .grad[, "x"] <- cos(.expr1) * 3; attr(.value, "grac .value\})
$>\mathrm{x}=7$
> eval(g)
[1] 0.8366556
attr(, "gradient") x
[1,] -1.643188

Why not the built-in D?

- It doesn't reinforce the notion of an operator on functions.
- It's too complicated.
$>\mathrm{g}=\operatorname{deriv}\left(\sim^{\sim} \sin (3 * \mathrm{x})\right.$, ' x ')
$>g$
expression(\{
.expr1 <- 3 * x; .value <- sin(.expr1)
.grad <- array(0, c(length(.value), 1), list(NULL, .grad[, "x"] <- cos(.expr1) * 3; attr(.value, "grac .value\})
$>x=7$
> eval(g)
[1] 0.8366556
attr(, "gradient")
x
[1,] -1.643188
I need to understand better the relationship between functions and formulas, and operations on formulas for extracting structure:

Example: Fitting Linear Models

R makes this amazingly easy.
> g = read.csv('galton-heights.csv')
family father mother sex height nkids

1	1	78.5	67.0	M	73.2	4

$\begin{array}{lllllll}2 & 1 & 78.5 & 67.0 & F & 69.0 & 4\end{array}$
$\begin{array}{lllllll}6 & 2 & 75.5 & 66.5 & \text { M } & 72.5 & 4\end{array}$
and so on
> lm (height ~ sex + father, data=g)
$\begin{array}{rrr}\text { (Intercept) } & \text { sexM } & \text { father } \\ 34.4611 & 5.1760 & 0.4278\end{array}$
> $\operatorname{lm}($ height \sim sex + father + mother, data $=g)$
(Intercept)
sexM father
mother
$\begin{array}{llll}15.3448 & 5.2260 & 0.4060 & 0.3215\end{array}$

Operating on the results of linear modeling

Sum of squares relationship:
> sum(g\$height^2)
[1] 4013892> m1 = lm(height ~ sex + father, data=g)
> sum(m1\$fitted^2) + sum(m1\$resid^2)
[1] 4013892
> m2 = lm(height ~ sex + father + mother, data=g)
> sum(m2\$fitted^2) + sum(m2\$resid^2)
[1] 4013892
Orthogonality of fitted and residual
> sum (m2\$fitted * m2\$resid)
[1] 4.239498e-12 -- essentially 0

Modeling: What's missing

Syntax is not forgiving of small mistakes:

- Mis-spelled column name:
> sum(g\$heights)
[1] 0
> sum(g\$height)
[1] 59951.1
- Named argument confounding. You flip 50 fair coins. Where's the 10th percentile on the number of heads?
> qbinom(.10, size=50, prob=.5)
[1] 20
> qbinom(. 10, size=50, p=.5)
[1] 5

Standard summaries are very easy

> m3 $=\operatorname{lm}($ height \sim sex + father + mother + nkids, data=g)
$>$ summary (m3)

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 16.18771 | 2.79387 | 5.794 | $9.52 \mathrm{e}-09$ |
| sexM | 5.20995 | 0.14422 | 36.125 | $<2 \mathrm{e}-16$ |
| father | 0.39831 | 0.02957 | 13.472 | $<2 \mathrm{e}-16$ |
| mother | 0.32096 | 0.03126 | 10.269 | $<2 \mathrm{e}-16$ |
| nkids | -0.04382 | 0.02718 | -1.612 | 0.107 |

> anova(m3)

| | Df | Sum Sq Mean Sq | F value | $\operatorname{Pr}(>F)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 1 | 4002377 | 4002377 | $8.6392 \mathrm{e}+05$ | $<2 \mathrm{e}-16$ |
| sex | 1 | 5875 | 5875 | $1.2680 \mathrm{e}+03$ | $<2 \mathrm{e}-16$ |
| father | 1 | 1001 | 1001 | $2.1609 \mathrm{e}+02$ | $<2 \mathrm{e}-16$ |
| mother | 1 | 490 | 490 | $1.0581 \mathrm{e}+02$ | $<2 \mathrm{e}-16$ |
| nkids | 1 | 12 | 12 | $2.5992 \mathrm{e}+00$ | 0.1073 |
| Residuals | 893 | 4137 | 5 | | |

Extensibility is important to teaching

Example 1: the t-test, Anova, and regression.
I want to show these are different aspects of the same thing.
> t.test (g\$height)
$\mathrm{t}=558.37, \mathrm{df}=897, \mathrm{p}-\mathrm{value}<2.2 \mathrm{e}-16$
> summary (lm(height ~ 1, data=g))
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $66.7607 \quad 0.1196558 .4<2 e-16$
> anova(lm(height ~ 1, data=g))
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
(Intercept) $140023774002377311777<2.2 \mathrm{e}-16$
Residuals 8971151513
> sqrt(311777)
[1] 558.37

Similarly with the 2-sample t-test

```
> t.test( g$height ~ g$sex, var.equal=TRUE)
t = -30.5481, df = 896, p-value < 2.2e-16
> summary(lm( height ~ sex, data=g))
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 64.1102 & 0.1206 & 531.70 & \(<2 e-16\) \\
sexM & 5.1187 & 0.1676 & 30.55 & \(<2 e-16\)
\end{tabular}
> anova(lm( height ~ sex, data=g))
    Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 140023774002377 635783.45< 2.2e-16
sex 1 5875 5875 933.18< 2.2e-16
Residuals 896 5640
> sqrt(933.18)
[1] 30.54800
```


Extensibility is important: Example 2

How Anova Works.
Let's add k random, junky terms to a model and see how R^{2} or the fitted sum of squares changes.
rand (k) notation added to modeling language.

Model	R^{2}	ΔR^{2}
footwidth $\sim 1+$ sex+footlength	0.4596	
footwidth~1+sex+footlength+rand (1)	0.4824	0.02284
footwidth~1+sex+footlength+rand (2)	0.4911	0.00873
$\begin{gathered} \text { footwidth } \sim 1+\text { sex }+ \text { footlength }+ \text { rand (3) } \\ \ldots \ldots \text { and so on ... } \end{gathered}$	0.4941	0.00297
footwidth $1+$ sex + footlength + rand (34)	0.9676	0.00365
footwidth $1+$ sex + footlength + rand (35)	0.9820	0.01440
footwidth $1+$ sex + footlength + rand (36)	1.0000	0.01799
footwidth $1+$ sex + footlength + rand (37)	1.0000	0.00000
footwidth~1+sex+footlength+rand(38)	1.0000	0.00000

The Modeling Walk

A model with 3 model terms fit to data with 39 cases.
\mathbf{R}^{\wedge} 2 versus m

Resampling

Resampling itself is a conceptually simple operation.
> resample($c(1,2,3), 10)$
[1] $1 \begin{array}{llllllllll}3 & 1 & 1 & 3 & 3 & 3 & 1 & 1 & 2\end{array}$
> resample($\mathrm{g}, 5$)
family father mother sex height nkids

282	70	70.0	65.0	F	62.5	5
74	20	72.7	69.0	F	66.0	8
149	40	71.0	66.0	M	71.0	5
282.1	70	70.0	65.0	F	62.5	5
61	17	73.0	64.5	F	66.5	6

Repetition is conceptually simple, but ...

... generally hard for neophytes to implement on the computer.
Not in R!
Example: Roll three dice and add them.
> sum (resample($1: 6,3$))
[1] 8
Now do this 50 times:
> repeattrials (sum (resample($1: 6,3)$), 50)
[1] $\begin{array}{lllllllllllllllll}14 & 6 & 12 & 10 & 7 & 13 & 13 & 11 & 13 & 10 & 11 & 6 & 7 & 5 & 16 & 14 & 11 \\ 13\end{array}$
[19] $16 \begin{array}{lllllllllllllllll} & 7 & 7 & 9 & 6 & 10 & 8 & 10 & 7 & 15 & 10 & 14 & 12 & 14 & 8 & 11 & 4 \\ 10\end{array}$
[37] $14 \begin{array}{lllllllllllll}14 & 12 & 10 & 8 & 12 & 12 & 8 & 7 & 4 & 17 & 16 & 10 & 11\end{array}$

Bootstrapping

Bootstrapping is hardly ever done in introductory statistics courses, even though it is so simple conceptually. This is because there is little computational support beyond the black-box type.
> mean(resample(g\$height))
Histogram of s
[1] 66.64577
> mean (resample(g\$height))
[1] 66.76303
> s = repeattrials(mean(resample(g\$height)),
$>$ hist(s)
> quantile(s, c(0.025, 0.975))
 $2.5 \% \quad 97.5 \%$
66.5277166 .97620

A command-line interface has big advantages

It allows us to put things together in creative ways.
Example 1: Confidence intervals on model coefficients.
> lm(height ~ sex + nkids, data=g)

(Intercept)	sexM	nkids
64.8013	5.0815	-0.1095

> lm(height ~ sex + nkids, data=resample(g))
(Intercept) sexM nkids
$64.73765 \quad 5.15831 \quad-0.09852$
> s = repeattrials(lm(height ~ sex + nkids, data=resample(g))\$coef, 1000)
> head(s)

	(Intercept)	sexM	nkids
1	65.01683	5.323394	-0.1664674
2	64.64250	5.262300	-0.1005491
3	64.75436	5.113593	-0.1079453

and so on
> quantile(s\$nkids, c(0.025, 0.975))

Resampling: Example 2

Hypothesis testing on single variables:

```
> lm( height ~ sex + nkids, data=g )
(Intercept)
    64.8013
5.0815
                                    -0.1095
> lm( height ~ sex + resample(nkids), data=g )
        (Intercept)
        64.00688
                                5.12503
                                0.01628
> s = repeattrials(lm( height ~ sex + resample(nkids),
    data=g )\$coef, 1000)
\(>\) head(s)
\begin{tabular}{lrrr} 
& (Intercept) & sexM & resample(nkids) \\
1 & 63.99812 & 5.117672 & 0.01821168 \\
2 & 64.18064 & 5.119589 & -0.01154208
\end{tabular}
    and so on
> quantile( \(s[, 3], c(0.025,0.975))\)
    \(2.5 \% \quad 97.5 \%\)
-0.05690810 0.05361429
```


Resampling: Example 3

Power/Sample-size demonstration. If the world were like our sample, how likely is a sample of 100 people to demonstrate that family size (nkids) is related to height?
\# Extract the p-value on nkids
> anova(lm (height ~ sex + nkids, data=g)) [3,5]
[1] 0.0004454307
\# Simulate a sample of size 100
> anova(lm(height ~ sex + nkids, data=resample(g,100)))[3
[1] 0.2743715
> s = repeattrials(anova(lm(height ~ sex + nkids, data=re
> head(s)
[1] 0.0018705810 .4980892490 .8010426540 .286201801
[5] 0.0552005720 .198855304 and so on
> table(s < . 05)
FALSE TRUE
774226 \# power is 23%

Distribution of p -values

Under the null:
> s = repeattrials(
anova(lm(height ~ sex + resample(nkids), data=g)) [3,5], 1000)
p-values under Null Hyp.

It would be nice to have a GUI that can support this kind of thing. How?

GUls are Important

Examples from our courses:

- Euler method of integration.
- Visualizing dynamics on the phase plane.
- Linear combinations of vectors.
future simulating causal networks.

A graphical approach to integration

The logistic-growth system:
$\dot{x}=r x(1-x / K)$

- The differential equation describes local dynamics.
- Growth rate changes with x.
- Accumulate small increments.

It's also calculus to teach the phenomenology of differential equations:

- equilibrium and stability
- oscillation

Computers can solve the DEs, so solution techniques are no longer central.

Fitting Linear Models

A	B	C
3	-3	2
2	4	0

Fitting Linear Models

A	B	C
3	-3	2
2	4	0

Fitting Linear Models

A	B	C
3	-3	2
2	4	0

Local Requirements for Adopting R

- A locally accessible expert.
- Concise instructions on how to do basic things. Like Kermit Sigmon's Matlab Primer.
- Things are vastly better than they once were, but still we don't exploit the 80/20 rule: 20% of the knowledge will get you 80% of the way there!

Summary

- GUIs are important, but ...
- We should embrace R's strength, an extensible command-line interface and syntax.

Summary

- GUls are important, but ...
- We should embrace R's strength, an extensible command-line interface and syntax.

