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Matching in Statistics: Cochran’s School in the 1970s

◮ Matched sampling to focus data collection
◮ E.g., Althauser and Rubin (1970): prospective comparative

study of effects of integration on black college graduates.
◮ Problem: some info about many; get more info about some.
◮ Many “controls” were not comparable to any black

integrated-college graduates.
◮ Solution: “computerized” matching procedures

◮ Multivariate distance matching (Cochran and Rubin, 1973;
Rubin, 1976)

◮ Matched sampling as a way to make model-based analysis
robust (Rubin, 1973, 1979)
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Matching in Statistics: Cochran’s School in the 1980s

◮ Propensity score
◮ Close matches on multivariate x not needed if you can

match closely on scalar φ(x) (Rosenbaum and Rubin,
1983, 1984).

◮ Good to combine matching on x with matching on φ(x),
privileging closeness on φ(x) (Rosenbaum and Rubin,
1985).

◮ Computerized matching → optimal matching (Rosenbaum,
1989)
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Matching in Statistics: Cochran’s School in the 1990s

◮ Theoretical & methodological extensions of propensity
scores (Rubin and Thomas, 1992, 1996)

◮ Theoretical & methodological extensions of optimal pair
matching (Rosenbaum, 1991; Gu and Rosenbaum, 1993)

◮ Influential applications (Dehejia and Wahba, 1999;
Connors et al., 1996)
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“date” is date of construction, in

years after 1965; “capacity” is net ca-

pacity of the power plant, in MWe

above 400.
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date capacity
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Z 6.1 730
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New and refurbished nuclear plants: discrepancies in
capacity and year of construction

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 40 28
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 25
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 31 28 35 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17
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By evaluating potential matches all

together rather than sequentially, op-

timal matching (blue lines) reduces

the sum of distances from 82 to 63.

(Match distance is to “optimal match-

ing” as statistical model is to “max-

imum likelihood.”)
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Introducing restrictions on who can be matched to
whom

With optmatch, matches are forbidden by placing ∞’s in the
distance matrix. This is a way to exclude unwanted matches, or
to reduce the number of controls.

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 Inf Inf
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 Inf
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 Inf 28 Inf 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17
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Example # 2: Gender equity study for research
scientists1

Women and men scientists are to be matched on grant funding.

Women Men
Subject log10(Grant) Subject log10(Grant)

A 5.7 V 5.5
B 4.0 W 5.3
C 3.4 X 4.9
D 3.1 Y 4.9

Z 3.9

1Discussed in Hansen and Klopfer (2006), Hansen (2004)



Full Matching2 the Gender Equity Sample

Women Men
Subject log10(Grant) Subject log10(Grant)

A 5.7 V 5.5
B 4.0 W 5.3
C 3.4 X 4.9
D 3.1 Y 4.9

Z 3.9

◮ Combines with-replacement & multiple controls matching.
◮ In general, much better matches than with pair matching.
◮ Optional restrictions simplify matched sets’ structure.

2(Rosenbaum, 1991; Hansen and Klopfer, 2006)
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Connection to propensity score matching

◮ Problem: compare a
“treatment” group
(Z = 1) to control
(Z = 0), adjusting for
covariates
X = (X1, . . . , Xk ).

◮ Propensity score refers
to φ(X ) = E(Z |X )

◮ . . . or to φ̂(X ).
◮ Propensity

score≈linear
discriminant.
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Among matching techniques, only full matching fully adapts. . .



Controlling the structure of matched sets

◮ Issue: v. different
Tx:Ctl ratios at L and
R of histogram.

◮ This arises
because. . . (Hansen,
2004).

◮ Full matching
accommodates this
better, but maybe
too well.

◮ Full matching with
restrictions
compromises
between full
matching and 1:k
matching.
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The min-cost flow optimization problem3

3Illustration from web notes by J. E. Beasley



Under the hood
Full matching via network flows4

4(Hansen and Klopfer, 2006, Fig. 2). Time complexity of the algorithm is
O(n3 log(n max(dist))).
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The optmatch add-on package: main functions

1. pairmatch() . Arguments:
distance The argument demanding most attention from

the user, b/c it defines “good” matches.
controls The # k of controls, for 1:k matching. Defaults

to 1.

2. fullmatch() . Arguments:
distance (sole mandatory argument)

min.controls, max.controls For controlling the structure of
matched sets. E.g., min.c=1/2, max.c=3
permits 2:1, 1:1, 1:2 and 1:3 matched sets.
Default to 0 & ∞, permitting k:1 and 1:k (∀k).

omit.fraction To drop a specified # of controls, as in
matched sampling. Defaults to 0, the
appropriate value for matched adjustment.
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appropriate value for matched adjustment.
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The optmatch add-on package: helper functions

1. pscore.dist(). Example:

> pmodel <- glm(pr~.-(pr+cost), family=binomial,
+ data=nuclear)
> pdist <- pscore.dist(pmodel)

2. mahal.dist(). Facilitates construction of Mahalanobis
distances for matching. Example:

> mdist <- mahal.dist(pr~date+cum.n, nuclear)

3. makedist(). Facilitates construction of arbitrary
distances for matching. See help page for examples.



The optmatch add-on package: addressing likely
problems

◮ Sequence is data frame 7→ distance matrix 7→ factor object
encoding the match. Easy to scramble ordering of
observations.
My Solution: helper functions pscore.dist,
mahal.dist and makedist carry metadata that
fullmatch and pairmatch use to prevent this problem.

◮ Matching is slow for large problems. (O(n3 log(n)) flops.)
My Solution: Match within subclasses. Example:
> mdist <- mahal.dist(pr~date+cum.n, nuclear,
pr~pt)
> fullmatch(mdist)
This matches within levels of pt.



The optmatch add-on package: addressing likely
problems

◮ Sequence is data frame 7→ distance matrix 7→ factor object
encoding the match. Easy to scramble ordering of
observations.
My Solution: helper functions pscore.dist,
mahal.dist and makedist carry metadata that
fullmatch and pairmatch use to prevent this problem.

◮ Matching is slow for large problems. (O(n3 log(n)) flops.)
My Solution: Match within subclasses. Example:
> mdist <- mahal.dist(pr~date+cum.n, nuclear,
pr~pt)
> fullmatch(mdist)
This matches within levels of pt.



The optmatch add-on package: addressing likely
problems

◮ Sequence is data frame 7→ distance matrix 7→ factor object
encoding the match. Easy to scramble ordering of
observations.
My Solution: helper functions pscore.dist,
mahal.dist and makedist carry metadata that
fullmatch and pairmatch use to prevent this problem.

◮ Matching is slow for large problems. (O(n3 log(n)) flops.)
My Solution: Match within subclasses. Example:
> mdist <- mahal.dist(pr~date+cum.n, nuclear,
pr~pt)
> fullmatch(mdist)
This matches within levels of pt.



The optmatch add-on package: addressing likely
problems

◮ Sequence is data frame 7→ distance matrix 7→ factor object
encoding the match. Easy to scramble ordering of
observations.
My Solution: helper functions pscore.dist,
mahal.dist and makedist carry metadata that
fullmatch and pairmatch use to prevent this problem.

◮ Matching is slow for large problems. (O(n3 log(n)) flops.)
My Solution: Match within subclasses. Example:
> mdist <- mahal.dist(pr~date+cum.n, nuclear,
pr~pt)
> fullmatch(mdist)
This matches within levels of pt.



The optmatch add-on package: addressing likely
problems

◮ Distances of mixed type, e.g. Mahalanobis matching within
propensity calipers (Rubin and Thomas, 2000), lead to
messy code, particularly with large problems requiring
matching within subclasses. My Solution: Defined
arithmetic operations for matching distance objects. To
Mahalanobis-match within levels of pt and with a
propensity caliper of .2 pooled SDs,

> mdist <- mahal.dist(pr~date+cum.n, nuclear,
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Summary

◮ Matching has uses in design & analysis of observational
studies.

◮ optmatch solves optimally such traditional problems as
matched sampling, pair matching, and matching with k
controls.

◮ optmatch can also solve matching problems more flexibly
by way of full matching, with or without structural
restrictions.

◮ Full matching combines particularly well w/ propensity
scores.

◮ The effort required to articulate & code relevant algorithms
seems to have dissuaded their widespread use. Now that
we’ve made that effort, perhaps this situation can change!
:)
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Example with propensity scores and stratification prior
to matching

>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial,data=nuclear)$linear.predictors

> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), ’pscore’]
+ abs(outer(pscr[trtvar],pscr[!trtvar], ’-’))
+ }

> psd2 <- makedist(pr~pt, nuclear, pscorediffs)

> fullmatch(psd2)

> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2, min=1, max=c(’0’=3, ’1’=2))

RItools package provides diagnostics. . .
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Modes of estimation for treatment effects
Preferred Type of outcome
mode of infer-
ence

Categorical Continuous

Randomization Agresti (2002),
Categorical Data
Analysis; Rosenbaum
(2002a), “Atributing
effects to treatment . . . ”

Rosenbaum (2002c),
Observational Studies;
Rosenbaum (2002b), “Cov-
ariance adjustment . . . .”

Conditional a Agresti (2002); Cox and
Snell (1989), Analysis of
binary data

ordinary OLSb is fine; see
also Rubin (1979), “Using
multivariate matched. . . .”

Bayes/Empirical
Bayes, esp.
hierarchical
linear models
c

Agresti (2002) Smith (1997), “Matching
with multiple controls. . . ”;
Raudenbush and Bryk
(2002), Hierarchical linear
models

aUses a fixed effect for each matched set.
bi.e., OLS with a fixed effect for each matched set plus treatment

effect(s)
cUses a random effect for each matched set.
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