Flexible, Optimal Matching for Comparative Studies Using the optmatch package

Ben Hansen

Statistics Department
University of Michigan
ben.b.hansen@umich.edu
http://www.stat.lsa.umich.edu/~bbh

9 August 2007

Outline

Matching and its role in statistics
Pair matching as an optimization problem

Recent history of pair matching in statistics

Optimal matching of two groups

A modern approach to "computerized" matching

Illustration: Hollywood matchmaking

Illustration: Hollywood matchmaking

- Lou Diamond Phillips!
- Boy George!
- Meg Ryan!
- Bo Derek!!! and. .

Illustration: Hollywood matchmaking

- Lou Diamond Phillips!
- Boy George!
- Meg Ryan!
- Bo Derek!!! and.

Illustration: Hollywood matchmaking

- Lou Diamond Phillips!
- Boy George!
- Meg Ryan!
- Bo Derek!!! and.

Illustration: Hollywood matchmaking

- Lou Diamond Phillips!
- Boy George!
- Meg Ryan!
- Bo Derek!!! and. . .

Illustration: Hollywood matchmaking

Winona Ryder!

Illustration: Hollywood matchmaking

Winona Ryder!

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

	8					(3)	4			315		
	0	-	0	-	1	2	-	1	-	0	-	-
	2	4	2	4	2	3	5	3	3	4	3	1
	-		-	2	-	-	4	-	4	-	4	4
4an	-	3	-	4	-	-	4	-	5	-		2

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

	, 5	5	-		θ		Tis		8	2-		
	0	-	0	-	1	2	-	1	-	0	-	-
	2	4	2	4	2	3	5	3	3	4	3	1
	-	1	-	2	-	-	4	-	4	-	4	4
	-	3	-	4	-	-	4	-	5	-	2	2

Matching based on a multivariate dissimilarity Or multivariate "distance"

Matching based on a multivariate dissimilarity Or multivariate "distance"

Outline

Matching and its role in statistics
Pair matching as an optimization problem
Recent history of pair matching in statistics

Optimal matching of two groups

A modern approach to "computerized" matching

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any black integrated-college graduates.
- Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
> - Problem: some info about many; get more info about some.
> - Many "controls" were not comparable to any black integrated-college graduates.
> - Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any back integrated-college graduates.
- Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any black integrated-college graduates.
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any black integrated-college graduates.
- Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any black integrated-college graduates.
- Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1970s

- Matched sampling to focus data collection
- E.g., Althauser and Rubin (1970): prospective comparative study of effects of integration on black college graduates.
- Problem: some info about many; get more info about some.
- Many "controls" were not comparable to any black integrated-college graduates.
- Solution: "computerized" matching procedures
- Multivariate distance matching (Cochran and Rubin, 1973; Rubin, 1976)
- Matched sampling as a way to make model-based analysis robust (Rubin, 1973, 1979)

Matching in Statistics: Cochran's School in the 1980s

- Propensity score
- Close matches on multivariate \mathbf{x} not needed if you can match closely on scalar $\phi(\mathbf{x})$ (Rosenbaum and Rubin, 1983, 1984).
- Good to combine matching on \mathbf{x} with matching on $\phi(\mathbf{x})$, privileging closeness on $\phi(\mathbf{x})$ (Rosenbaum and Rubin, 1985).
- Computerized matching \rightarrow optimal matching (Rosenbaum, 1989)

Matching in Statistics: Cochran's School in the 1980s

- Propensity score
- Close matches on multivariate \mathbf{x} not needed if you can match closely on scalar $\phi(\mathbf{x})$ (Rosenbaum and Rubin, 1983, 1984).
- Good to combine matching on \mathbf{x} with matching on $\phi(\mathbf{x})$, privileging closeness on $\phi(\mathbf{x})$ (Rosenbaum and Rubin, 1985).
- Computerized matching \rightarrow optimal matching (Rosenbaum, 1989)

Matching in Statistics: Cochran's School in the 1990s

- Theoretical \& methodological extensions of propensity scores (Rubin and Thomas, 1992, 1996)
- Theoretical \& methodological extensions of optimal pair matching (Rosenbaum, 1991; Gu and Rosenbaum, 1993)
- Influential applications (Dehejia and Wahba, 1999; Connors et al., 1996)

Outline

Matching and its role in statistics

Optimal matching of two groups
Comparing nuclear plants: an illustration Generalizations of pair matching

A modern approach to "computerized" matching

Costs of nuclear plants

A small comparative study from a classic text

Costs of nuclear plants

A small comparative study from a classic text

Existing site		
	date	capacity
A	2.3	660
B	3.0	660
C	3.4	420
D	3.4	130
E	3.9	650
F	5.9	430
G	5.1	420

"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

New site		
	date	capacity
H	3.6	290
I	2.3	660
J	3.0	660
K	2.9	110
L	3.2	420
M	3.4	60
N	3.3	390
O	3.6	160
P	3.8	390
Q	3.4	130
R	3.9	650
S	3.9	450
T	3.4	380
U	4.5	440
V	4.2	690
W	3.8	510
X	4.7	390
Y	5.4	140
Z	6.1	730

Existing site	New site		
date capacity		date	capacity
A 2.3	H	3.6	290
B $3.0 \quad 660$	J	2.3 3.0	660
C $3.4 \quad 420$	K	2.9	110
D 3.4130	L	3.2	420
E $3.9 \quad 650$	M	3.4	60
F $5.9 \quad 430$	O	3.6	160
G 5.1 420	P	3.8	390
	Q	3.4	130
	R	3.9	650
	S	3.9	450
mple: 1:2 matching by a	T	3.4	380
ditional greedy algorithm	U	4.5	440
(ional, greedy algorithm.	V	4.2	690
	W	3.8	510
" is date of construction, in	X	4.7	390
s after 1965. "capacity" is net ca-	Y	5.4	140
s after 1965; "capacity" is net ca-	Z	6.1	730

Existing site	New site		
date capacity		date	capacity
A 2.3 660	H	3.6	290
B $3.0 \quad 660$		3.0 3.0	660
C $3.4 \quad 420$	K	2.9	110
D 3.4130		3.2	420
E 3.9650	M	3.4	60
E 3.9 650	N	3.3	390
F $5.9 \quad 430$	0	3.6	160
G $5.1 \quad 420$	P	3.8	390
	Q	3.4	130
	R	3.9	650
	S	3.9	450
mple: 1:2 matching by a	T	3.4	380
ditional greedy algorithm.	U	4.5	440
(ional, greedy algorithm.	V	4.2	690
	W	3.8	510
" is date of construction, in	X	4.7	390
, 1965 . "capacity" is net	Y	5.4	140
s after 1965; "capacity" is net ca-	Z	6.1	730

Existing site	New site		
date capacity		date	capacity
A 2.3 660	H	3.6	290
B $3.0 \quad 660$		3.0	660
C 3.4	K	2.9	110
D 3.4		3.2	420
E $3.9 \quad 650$	M	3.4	60
E $3.9 \quad 650$		3.3	390
F 5.9 430	0	3.6	160
G 5.1 420		3.8	390
	Q	3.4	130
	R	3.9	650
	S	3.9	450
ample: $1: 2$ matching by a		3.4	380
onal, greedy algorithm.	U	4.5	440
onal, greedy algorithm.	V	4.2	690
	W	3.8	510
" is date of construction, in	X	4.7	390
s after 1965. "capacity" is net ca-	Y	5.4	140
s after 1965; "capacity is net ca-	Z	6.1	730

 pacity of the power plant, in MWe above 400.

	Existin	site		New	
	date	capacity		date	capacity
A	2.3	660	H	3.6	290
B	3.0	660		3.0	660
C	3.4	420	K	2.9	110
D	3.4	130		3.2	420
E	3.9	650		3.4	60
F	5.9	430	\bigcirc	3.6	160
G	5.1	420		3.8	390
				3.4	130
				3.9	650
				3.9	450
Example	1:2	matching by a		3.4	380
tradition	I, gre	dy algorithm.	v	4.5 4.2	440
			w	3.8	510
"date" is	date of	construction, in	X	4.7	390
years after	1965;	"apacity" is net ca-	z	5.4 6.1	140 730

 pacity of the power plant, in MWe above 400.

	Existi	site		New	
	date	capacity		date	capacity
A	2.3	660	H	3.6	290
B	3.0	660		2.3 3.0	660
C	3.4	420	K	2.9	110
D	3.4	130		3.2	420
E	3.9	650		3.4	60 390
F	5.9	430	0	3.6	160
G	5.1	420		3.8	390
				3.4	130
				3.9	650
				3.9	450
Example	1:2	matching by		3.4	380
tradition		dy algorithm.		4.5	440
				4.2 3.8	690 510
date" is	date	construction,		4.7	390
years after	65;	"apacity" is net ca-	Y	5.4	140

New and refurbished nuclear plants: discrepancies in capacity and year of construction

Exist- ing	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	28	0	3	22	14	30	17	28	26	28	20	22	23	26	21	18	34	40	28
B	24	3	0	22	10	27	14	26	24	24	16	19	20	23	18	16	31	37	25
C	10	18	14	18	4	12	6	11	9	10	14	12	6	14	22	10	16	22	28
D	7	28	24	8	14	2	10	6	12	0	24	22	4	24	32	20	18	16	38
E	17	20	16	32	18	26	20	18	12	24	0	2	20	6	8	4	14	20	14
F	20	31	28	35	20	29	22	20	14	26	12	9	22	5	15	12	9	11	12
G	14	32	29	30	18	24	17	16	10	22	12	10	17	6	16	14	4	8	17

the sum of distances from 82 to 63 .
(Match distance is to "optimal matching" as statistical model is to "maximum likelihood.")

Introducing restrictions on who can be matched to whom

With optmatch, matches are forbidden by placing ∞ 's in the distance matrix. This is a way to exclude unwanted matches, or to reduce the number of controls.

	New sites																				
ing	H		J	J K	L	M	N	0	P	Q			S	T	U	V	W		Y	Y	Z
A	28		03	322	14	30	17	28	26	28	20		2	23	26	21		34			
B	24		30	022	10	27	14	26	24	24	16	19	9	20	23	18	16	31	37	7	
C	10	18	814	1418	4	12	6	11	9	10	14	12		6	14	22	10	16	22		
D	7	28	824	248	14	2	10	6	12	0	24	22		4	24	32	20	18	16		
E	17	20	016	1632	18	26	20	18	12	24	0			20	6	8	4	4	20		
F	20	Int	nf 28	28 lnf	20	29			14	26	12					15	12				
G	14	32	229	930	18	24	17	16	10	22	12	10		17	6	16	14	4		8	

Outline

Matching and its role in statistics

Optimal matching of two groups
Comparing nuclear plants: an illustration
Generalizations of pair matching

A modern approach to "computerized" matching

Example \# 2: Gender equity study for research scientists ${ }^{1}$

Women and men scientists are to be matched on grant funding.

Women		Men	
Subject	$\log _{10}$ (Grant)	Subject	$\log _{10}$ (Grant)
A	5.7	V	5.5
B	4.0	W	5.3
C	3.4	X	4.9
D	3.1	Y	4.9
		Z	3.9

${ }^{1}$ Discussed in Hansen and Klopfer (2006), Hansen (2004)

Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}$ (Grant)	Subject	$\log _{10}$ (Grant)
A	5.7	V	5.5
B	4.0	W	5.3
C	3.4	X	4.9
D	3.1	Y	4.9
			3.9

- Combines with-replacement \& multiple controls matching.
- In general, much better matches than with pair matching.
- Optional restrictions simplify matched sets' structure.
${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2006)

Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}$ (Grant)	Subject	$\log _{10}$ (Grant)
A	5.7	W	5.5
B	4.0	Y	4.3
C	3.4	Z	3.9
D	3.1		

- Combines with-replacement \& multiple controls matching.
- In general, much better matches than with pair matching.
- Optional restrictions simplify matched sets' structure.

[^0]
Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}$ (Grant)	Subject	$\log _{10}$ (Grant)
A	5.7	W	5.5
B	4.0	4.9	
C	3.4	Y	4.9
D	3.1		3.9

- Combines with-replacement \& multiple controls matching.
- In general, much better matches than with pair matching.
- Optional restrictions simplify matched sets' structure.

[^1]
Connection to propensity score matching

- Problem: compare a
"treatment" group
($Z=1$) to control
($Z=0$), adjusting for covariates
$X=\left(X_{1}, \ldots, X_{k}\right)$.
- Propensity score refers
to $\phi(X)=\mathbf{E}(Z \mid X)$
- Propensity
score \approx linear
discriminant.

Connection to propensity score matching

- Problem: compare a
"treatment" group
($Z=1$) to control
($Z=0$), adjusting for covariates
$X=\left(X_{1}, \ldots, X_{k}\right)$.
- Propensity score refers to $\phi(X)=\mathbf{E}(Z \mid X)$
- Propensity
score \approx linear
discriminant.

Connection to propensity score matching

- Problem: compare a
"treatment" group
($Z=1$) to control
($Z=0$), adjusting for covariates
$X=\left(X_{1}, \ldots, X_{k}\right)$.
- Propensity score refers to $\phi(X)=\mathbf{E}(Z \mid X)$
- ... or to $\hat{\phi}(X)$.
- Propensity
score \approx linear
discriminant.

Connection to propensity score matching

This is typical:

- Problem: compare a "treatment" group
($Z=1$) to control
($Z=0$), adjusting for covariates
$X=\left(X_{1}, \ldots, X_{k}\right)$.
- Propensity score refers to $\phi(X)=\mathbf{E}(Z \mid X)$
- ... or to $\hat{\phi}(X)$.
- Propensity
score \approx linear discriminant.

Histogram of propensity scores

Connection to propensity score matching

This is typical:

- Problem: compare a "treatment" group
($Z=1$) to control
($Z=0$), adjusting for
covariates
$X=\left(X_{1}, \ldots, X_{k}\right)$.
- Propensity score refers to $\phi(X)=\mathbf{E}(Z \mid X)$
- ... or to $\hat{\phi}(X)$.
- Propensity
score \approx linear discriminant.

Among matching techniques, only full matching fully adapts...

Controlling the structure of matched sets

- Issue: v. different

Tx:Ctl ratios at L and
R of histogram.

- This arises
because... (Hansen, 2004).
- Full matching accommodates this better, but maybe too well.
- Full matching with restrictions
compromises
between full
matching and 1 : k
matching.

Histogram of propensity scores

Controlling the structure of matched sets

- Issue: v. different

Tx:Ctl ratios at L and R of histogram.

- This arises because...(Hansen, 2004).
- Full matching accommodates this better, but mavbe too well
- Full matching with restrictions compromises

between full
matching and $1: k$ matching

Controlling the structure of matched sets

- Issue: v. different Tx:Ctl ratios at L and R of histogram.
- This arises because... (Hansen, 2004).
- Full matching accommodates this better, but maybe too well.
- Full matching with restrictions

Histogram of propensity scores

Controlling the structure of matched sets

- Issue: v. different Tx:Ctl ratios at L and R of histogram.
- This arises because... (Hansen, 2004).
- Full matching accommodates this better, but maybe too well.
- Full matching with restrictions compromises between full matching and $1: k$ matching.

(Hansen, 2004)

Outline

Matching and its role in statistics

Optimal matching of two groups

A modern approach to "computerized" matching Optimal bipartite matching via network flows Optimal bipartite matching in R

The min-cost flow optimization problem ${ }^{3}$

${ }^{3}$ Illustration from web notes by J. E. Beasley

Under the hood

Full matching via network flows ${ }^{4}$

${ }^{4}$ (Hansen and Klopfer, 2006, Fig. 2). Time complexity of the algorithm is $O\left(n^{3} \log (n \max (\right.$ dist $\left.))\right)$.

Outline

Matching and its role in statistics

Optimal matching of two groups

A modern approach to "computerized" matching
Optimal bipartite matching via network flows
Optimal bipartite matching in R

The optmatch add-on package: main functions

1. pairmatch (). Arguments:
distance The argument demanding most attention from the user, b/c it defines "good" matches.
controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch(). Arguments:

The optmatch add-on package: main functions

1. pairmatch (). Arguments: distance The argument demanding most attention from the user, b/c it defines "good" matches.
controls The \# k of controls, for 1:k matching. Defaults
2. fullmatch(). Arguments:

The optmatch add-on package: main functions

1. pairmatch (). Arguments:
distance The argument demanding most attention from the user, b/c it defines "good" matches. controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch(). Arguments:

The optmatch add-on package: main functions

1. pairmatch (). Arguments: distance The argument demanding most attention from the user, b/c it defines "good" matches. controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch(). Arguments:

The optmatch add-on package: main functions

1. pairmatch (). Arguments: distance The argument demanding most attention from the user, b/c it defines "good" matches. controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch (). Arguments:
distance (sole mandatory argument)

The optmatch add-on package: main functions

1. pairmatch (). Arguments:
distance The argument demanding most attention from the user, b/c it defines "good" matches.
controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch (). Arguments:
distance (sole mandatory argument)
min.controls, max.controls For controlling the structure of matched sets. E.g., min. c=1/2, max. c=3 permits 2:1, 1:1, 1:2 and 1:3 matched sets. Default to $0 \& \infty$, permitting $k: 1$ and $1: k(\forall k)$.
omit.fraction To drop a specified \# of controls, as in
matched sampling. Defaults to 0, the
appropriate value for matched adjustment.

The optmatch add-on package: main functions

1. pairmatch (). Arguments:
distance The argument demanding most attention from the user, b/c it defines "good" matches.
controls The \# k of controls, for $1: k$ matching. Defaults to 1.
2. fullmatch (). Arguments:
distance (sole mandatory argument)
min.controls, max.controls For controlling the structure of
matched sets. E.g., min. c=1/2, max. c=3 permits 2:1, 1:1, 1:2 and 1:3 matched sets. Default to $0 \& \infty$, permitting $k: 1$ and $1: k(\forall k)$.
omit.fraction To drop a specified \# of controls, as in matched sampling. Defaults to 0 , the appropriate value for matched adjustment.

The optmatch add-on package: helper functions

1. pscore.dist(). Example:
> pmodel <- glm(pr~.-(pr+cost), family=binomial,

+ data=nuclear)
> pdist <- pscore.dist(pmodel)

2. mahal.dist (). Facilitates construction of Mahalanobis distances for matching. Example:
> mdist <- mahal.dist(pr~date+cum.n, nuclear)
3. makedist (). Facilitates construction of arbitrary distances for matching. See help page for examples.

The optmatch add-on package: addressing likely problems

- Sequence is data frame \mapsto distance matrix \mapsto factor object encoding the match. Easy to scramble ordering of observations.

> My Solution: helper functions pscore.dist,
> mahal.dist and makedist carry metadata that
> fullmatch and pairmatch use to prevent this problem.
> - Matching is slow for large problems. $\left(O\left(n^{3} \log (n)\right)\right.$ flops. $)$

> My Solution: Match within subclasses. Example:
\square
> fullmatch(mdist)
This matches within levels of pt.

The optmatch add-on package: addressing likely problems

- Sequence is data frame \mapsto distance matrix \mapsto factor object encoding the match. Easy to scramble ordering of observations.
My Solution: helper functions pscore. dist, mahal. dist and makedist carry metadata that fullmatch and pairmatch use to prevent this problem.

My Solution: Match within subclasses. Example:

The optmatch add-on package: addressing likely problems

- Sequence is data frame \mapsto distance matrix \mapsto factor object encoding the match. Easy to scramble ordering of observations.
My Solution: helper functions pscore. dist, mahal. dist and makedist carry metadata that fullmatch and pairmatch use to prevent this problem.
- Matching is slow for large problems. $\left(O\left(n^{3} \log (n)\right)\right.$ flops.)

The optmatch add-on package: addressing likely problems

- Sequence is data frame \mapsto distance matrix \mapsto factor object encoding the match. Easy to scramble ordering of observations.
My Solution: helper functions pscore. dist, mahal. dist and makedist carry metadata that fullmatch and pairmatch use to prevent this problem.
- Matching is slow for large problems. $\left(O\left(n^{3} \log (n)\right)\right.$ flops.) My Solution: Match within subclasses. Example:

```
> mdist <- mahal.dist(pr~date+cum.n, nuclear,
```

pr~pt)
> fullmatch(mdist)

This matches within levels of pt.

The optmatch add-on package: addressing likely problems

- Distances of mixed type, e.g. Mahalanobis matching within propensity calipers (Rubin and Thomas, 2000), lead to messy code, particularly with large problems requiring matching within subclasses.
arithmetic operations for matching distance objects. To Mahalanobis-match within levels of pt and with a propensity caliper of . 2 pooled SDs,
\square pr~pt) data=nuclear) $>$ pdist $<-$ pscore. dist (pmodel, pr~pt)

The optmatch add-on package: addressing likely problems

- Distances of mixed type, e.g. Mahalanobis matching within propensity calipers (Rubin and Thomas, 2000), lead to messy code, particularly with large problems requiring matching within subclasses. My Solution: Defined arithmetic operations for matching distance objects. To Mahalanobis-match within levels of pt and with a propensity caliper of . 2 pooled SDs,
> mdist <- mahal.dist (pr~date+cum.n, nuclear, pr~pt)
> pmodel <- glm(pr~.-(pr+cost), family=binomial, data=nuclear)
> pdist <- pscore.dist (pmodel, pr~pt)
> fullmatch(mdist/(pdist<.2))

Summary

- Matching has uses in design \& analysis of observational studies.
- optmatch solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- optmatch can also solve matching problems more flexibly by way of full matching, with or without structural restrictions.
- Full matching combines particularly well w/ propensity scores.
- The effort required to articulate \& code relevant algorithms seems to have dissuaded their widespread use. Now that we've made that effort, perhaps this situation can change! :)

Summary

- Matching has uses in design \& analysis of observational studies.
- optmatch solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- optmatch can also solve matching problems more flexibly by way of full matching, with or without structural restrictions.
- Full matching combines particularly well w/ propensity scores.
- The effort required to articulate \& code relevant algorithms seems to have dissuaded their widespread use. Now that we've made that effort, perhaps this situation can change! :)

Summary

- Matching has uses in design \& analysis of observational studies.
- optmatch solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- optmatch can also solve matching problems more flexibly by way of full matching, with or without structural restrictions.
- Full matching combines particularly well w/ propensity scores.
- The effort required to articulate \& code relevant algorithms seems to have dissuaded their widespread use. Now that we've made that effort, perhaps this situation can change! :)

Summary

- Matching has uses in design \& analysis of observational studies.
- optmatch solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- optmatch can also solve matching problems more flexibly by way of full matching, with or without structural restrictions.
- Full matching combines particularly well w/ propensity scores.
- The effort required to articulate \& code relevant algorithms seems to have dissuaded their widespread use. Now that we've made that effort, perhaps this situation can change!

Summary

- Matching has uses in design \& analysis of observational studies.
- optmatch solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- optmatch can also solve matching problems more flexibly by way of full matching, with or without structural restrictions.
- Full matching combines particularly well w/ propensity scores.
- The effort required to articulate \& code relevant algorithms seems to have dissuaded their widespread use. Now that we've made that effort, perhaps this situation can change!
:)

Agresti, A. (2002), Categorical data analysis, John Wiley \& Sons.
Althauser, R. and Rubin, D. (1970), "The Computerized Construction of a Matched Sample," American Journal of Sociology, 76, 325-346.
Cochran, W. G. and Rubin, D. B. (1973), "Controlling Bias in Observational Studies: A Review," Sankhyā, Series A, Indian Journal of Statistics, 35, 417-446.
Connors, A. J., Speroff, T., Dawson, N., Thomas, C., Harrell, F. J., Wagner, D., Desbiens, N., Goldman, L., Wu, A., Califf, R., Fulkerson, W. J., Vidaillet, H., Broste, S., Bellamy, P., Lynn, J., and Knaus, W. (1996), "The Effectiveness of Right Hearth Catheterization in the Initial Care of Critically III Patients. SUPPORT Investigators." Journal of the American Medical Association, 276, 889-97.

Cox, D. R. and Snell, E. J. (1989), Analysis of Binary Data, Chapman \& Hall Ltd.
Dehejia, R. and Wahba, S. (1999), "Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs," Journal of the American Statistical Association, 94, 1053-1062.
Gu, X. and Rosenbaum, P. R. (1993), "Comparison of Multivariate Matching Methods: Structures, Distances, and Algorithms," Journal of Computational and Graphical Statistics, 2, 405-420.
Hansen, B. B. (2004), "Full matching in an observational study of coaching for the SAT," Journal of the American Statistical Association, 99, 609-618.
Hansen, B. B. and Klopfer, S. O. (2006), "Optimal full matching and related designs via network flows," Journal of Computational and Graphical Statistics, 15, 609-627.
Raudenbush, S. W. and Bryk, A. S. (2002), Hierarchical Linear Models: Applications and Data Analysis Methods, Sage Publications Inc.

Rosenbaum, P. R. (1989), "Optimal Matching for Observational Studies," Journal of the American Statistical Association, 84, 1024-1032.

- (1991), "A Characterization of Optimal Designs for Observational Studies," Journal of the Royal Statistical Society, 53, 597-610.
- (2002a), "Attributing effects to treatment in matched observational studies," Journal of the American Statistical Association, 97, 183-192.
- (2002b), "Covariance adjustment in randomized experiments and observational studies," Statistical Science, 17, 286-327.
- (2002c), Observational Studies, Springer-Verlag, 2nd ed.

Rosenbaum, P. R. and Rubin, D. B. (1983), "The Central Role of the Propensity Score in Observational Studies for Causal Effects," Biometrika, 70, 41-55.

- (1984), "Reducing Bias in Observational Studies using Subclassification on the Propensity Score," Journal of the American Statistical Association, 79, 516-524.
- (1985), "Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score," The American Statistician, 39, 33-38.
Rubin, D. B. (1973), "The Use of Matched Sampling and Regression Adjustment to Remove Bias in Observational Studies," Biometrics, 29, 185-203.
- (1976), "Multivariate Matching Methods That Are Equal Percent Bias Reducing. I: Some Examples (Corr: V32 P955)," Biometrics, 32, 109-120.
- (1979), "Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies," Journal of the American Statistical Association, 74, 318-328.

Rubin, D. B. and Thomas, N. (1992), "Characterizing the Effect of Matching Using Linear Propensity Score Methods With Normal Distributions," Biometrika, 79, 797-809.

- (1996), "Matching Using Estimated Propensity Scores: Relating Theory to Practice," Biometrics, 52, 249-64.
- (2000), "Combining Propensity Score Matching with Additional Adjustments for Prognostic Covariates," Journal of the American Statistical Association, 95, 573-585.

Smith, H. (1997), "Matching with Multiple Controls to Estimate Treatment Effects in Observational Studies," Sociological Methodology, 27, 325-353.

Example with propensity scores and stratification prior to matching

```
>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial,data=nuclear)$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], ' -'))
+ }
```

> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2,
min $=1$,

Example with propensity scores and stratification prior to matching

```
>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial,data=nuclear)$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], ' -'))
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
```

> fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2,
min=1,

Example with propensity scores and stratification prior to matching

```
>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial,data=nuclear)$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], ' -'))
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> fullmatch(psd2)
```

> fullmatch(psd2,
min. controls $=1$

Example with propensity scores and stratification prior to matching

```
>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial,data=nuclear)$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2, min=1, max=c('0'=3, '1'=2))
```

RItools package provides diagnostics...

Modes of estimation for treatment effects

Preferred	Type of outcome	
mode of inference	Categorical	Continuous
Randomization	Agresti Categorical (2002), Data Analysis; Rosenbaum (2002a), "Atributing effects to treatment ..."	Rosenbaum (2002c), Observational Studies; Rosenbaum (2002b), "Cov- ariance adjustment"
Conditional ${ }^{\text {a }}$	Agresti (2002); Cox and Snell (1989), Analysis of binary data	ordinary OLS ${ }^{b}$ is fine; see also Rubin (1979), "Using multivariate matched. ..."
Bayes/Empirica Bayes, esp. hierarchical linear models c	Agresti (2002)	Smith (1997), "Matching with multiple controls..."; Raudenbush and Bryk (2002), Hierarchical linear models

[^2]
[^0]: ${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2006)

[^1]: ${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2006)

[^2]: ${ }^{a}$ Uses a fixed effect for each matched set.
 $b_{\text {i.e., }}$ OLS with a fixed effect for each matched set plus treatment effect(s)
 ${ }^{c}$ Uses a random effect for each matched set.

