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Are my data a “large” data set?

• Computing hardware and software evolves rapidly (my DVD
player runs R). We must apply an evolving standard for what
constitutes a “large” data set.

• Your data are not large if using the naive (i.e. the “blunt
instrument” or fortune(122)) approach takes less time than
finding and reading the documentation that describes how to
do what you want to do efficiently.

• If you find that the naive approach runs out of memory or
takes a long time you can

• Send an email message to R-help with a subject like “R is
SOOOOOO SLOOOOOOW” and vaguely describe what you
are trying to do and why this software is so bad. (Do keep an
asbestos suit handy for the fortune(9) response.)

• Try the fortune(138) approach.
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What is the effect of large data?

• In short, you need to think about the computation and how it
is to be done.

• Early texts on statistical computing (Chambers, 1975 or
Kennedy and Gentle, 1980) emphasized algorithms for
numerical linear algebra, simulation, optimization, etc. paying
careful attention to the time and space requirements.

• In modern environments we don’t bother with “counting
flops” because we realize that setting up the numerical
computation often dominates the time spent actually doing
the computation (fortune(98)).

• Large data sets can change that balance. All that hard earned
knowledge of how the cost of various operations changes with
the size of the matrices involved
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Models and model matrices

• One of the underappreciated aspects of the S language is the
ability to combine a formula and a data set to produce model
frame and a model matrix. It is not as trivial as it may seem.

• Most operations with an n× p model matrix X and a
response vector y are some form of least squares (e.g.
iteratively reweighted least squares).

• Everything you learned in a linear algebra class doesn’t apply
to computational linear algebra. (“No, Virginia, least squares
computations are not really done as (X ′X)−1 X ′y.”)

• Numerical analysts recognize two direct decomposition
methods (QR and Cholesky) for linear least squares. The time
complexity is np2 for both. Space complexity is p2 for
Cholesky and np for QR. (The “sweep” operator used by SAS
is not even considered a contender.)
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Rank deficiencies

• The sweep-based method used by SAS is used because it can
detect and remove rank deficiencies (in a way different from
how numerical analysts would do it).

• The problem of rank deficiencies occurs less frequently in the
S language implementation but still frequently enough that it
must be taken into consideration. This is why the QR
decomposition in R is still based on Linpack, not Lapack.

• Standard numerical linear algebra software doesn’t quite do
things the way that statisticians want to (and numerical
analysts don’t seem to want to make the necessary changes).
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Cholesky versus QR

• The Cholesky method can be row-oriented (i.e. it can operate
on horizontal sections of X and y).

• The QR method is column-oriented.

• In theory R provides the option of using Cholesky or QR (there
is a method argument to lm.fit). In practice it only allows
QR. (See previous discussion of rank deficiency.) “In theory,
theory and practice are the same. In practice, they’re not.”

• QR has somewhat better numerical properties than Cholesky.
If this matters your X is close to rank deficient.



“large” data? Model matrices dense Sparse Conclusions

What can you do with existing dense matrix software?

• You could work on horizontal sections of X and y (biglm
package) with a Cholesky decomposition.

• If you use iterative reweighting then you must store all of X
somewhere or regenerate it from the model frame and the
formula at each iteration.
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Is n large, p moderate, or are n and p both large?

• If p is getting large as n gets large, what causes p to get large?

• Do you have “nuisance parameters” associated with
experimental (observational) units? If so, they should
probably be modeled as random effects.

• If the linear predictor involves nuisance parameters, that part
of the model matrix will end up being sparse.

• If you model the effects of units as fixed effects you need to
watch for rank deficiencies. When modeled as random effects
the “shrinkage” behavior of the BLUPs provides the
regularization.

• For this type of data and model the combination of
mixed-effects models and sparse matrix techniques is highly
effective.
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An example

’data.frame’: 1721024 obs. of 9 variables:

$ instr : Factor w/ 7964 levels "10000","10001",..: 1 1 1 1 1 1 1 1 1 1 ...

$ dept : Factor w/ 106 levels "AERO","AFAM",..: 43 43 43 43 43 43 43 ...

$ id : Factor w/ 54711 levels "900000001","900000002",..: 12152 1405 ...

$ nclass : num 40 29 33 13 47 49 37 14 21 20 ...

$ vgpa : num NA NA NA NA NA NA NA NA NA NA ...

$ rawai : num 2.88 -1.15 -0.08 -1.94 3.00 ...

$ gr.pt : num 4 1.7 2 0 3.7 1.7 2 4 2 2.7 ...

$ section : Factor w/ 70366 levels "19959 AERO011A001",..: 18417 18417 18417 ...

$ semester: num 19989 19989 19989 19989 19972 ...
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An initial model fit
> system.time(m1 <- lmer(gr.pt ~ (1|id) + (1|instr) + (1|dept),
+ anon.grades.df, verbose = 1))

0: 3661278.9: 0.294219 0.111907 0.0127038

1: 3449897.0: 0.759218 0.360591 0.862370

2: 3447850.7: 0.933685 0.418499 0.797016

3: 3447432.7: 0.872045 0.462103 0.792406

4: 3447415.1: 0.876286 0.448215 0.791340

5: 3447413.5: 0.873344 0.445115 0.790446

6: 3447413.1: 0.874789 0.443935 0.789482

7: 3447412.9: 0.873407 0.443476 0.787969

8: 3447412.6: 0.874738 0.443452 0.786346

9: 3447399.6: 0.873381 0.435214 0.665693

10: 3447382.9: 0.873987 0.446658 0.545296

11: 3447380.0: 0.873637 0.440919 0.486841

12: 3447379.6: 0.874317 0.444942 0.472003

13: 3447379.5: 0.874401 0.443633 0.475912

14: 3447379.5: 0.874153 0.443656 0.475909

15: 3447379.5: 0.874185 0.443656 0.475662

16: 3447379.5: 0.874191 0.443667 0.475346

user system elapsed

3237.977 28.393 3266.937
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An initial model fit

Linear mixed-effects model fit by REML

Formula: gr.pt ~ (1 | id) + (1 | instr) + (1 | dept)

Data: anon.grades.df

AIC BIC logLik MLdeviance REMLdeviance

3447387 3447437 -1723690 3447374 3447379

Random effects:

Groups Name Variance Std.Dev.

id 0.3085 0.555

instr 0.0795 0.282

dept 0.0909 0.301

Residual 0.4037 0.635

Number of obs: 1685394, groups: id, 54711; instr, 7915; dept, 102

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.1996 0.0314 102
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How can such a computation be done?

• If we write a linear mixed model as

y = Xβ + Zb + ε, b ∼ N (0,Σ), ε ∼ N (0, σ2I), b ⊥ ε
(1)

where Σ depends on a parameter θ (the three relative variance
components, in the example), then Z and Σ are very sparse.

• Let Σ(θ) = T (θ)S(θ)S(θ)T ′(θ) be the “LDL” form of the
Cholesky factorization of the relative variance matrix. That is,
T is unit lower triangular and bmS is diagonal and on the
scale of the relative standard deviation, not the variance. In
our example T = I.

• Let P represent the fill-reducing permutation for Z ′Z.

• For a given value of θ set V = ZT (θ)S(θ)P ′.
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The mixed model equations

• We work with the Choleksy decomposition of an extended
system matrixP (V ′V + I)P ′ PV ′X PV ′y

X ′V P ′ X ′X X ′y
y′V P ′ y′X y′y

 = R′R (2)

where

R =

L′ RV X rV y

0 RX rXy

0 0 r

 . (3)

• The matrices L′ and RX are upper triangular of dimension
q × q and p× p respectively. The corresponding vectors, rZy

and rXy, are of dimension q and p, and r is a scalar.
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Profiled deviance functions

• The profiled deviance function

− 2`(β̂(θ),θ, σ̂2(θ)|y)

= n log

(
2πr2(θ)

n

)
+ n + 2 log |L(θ)|

= n [1 + log (2π/n)] + n log r2(θ) + 2 log |L(θ)|. (4)

• The profiled REML deviance is

− 2`R(θ, σ̂2(θ)|y)

= (n− p) [1 + log (2π/(n− p))] + (n− p) log r2(θ)

+ 2 log |L(θ)|+ 2 log |RX(θ)|. (5)
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An initial model fit

> object.size(m1)/(2^20)

[1] 747.95

> slotsz(m1)/(2^20)

L Vt Zt frame flist X y

5.2332e+02 6.4294e+01 6.4294e+01 4.4384e+01 2.3057e+01 1.2859e+01 1.2859e+01

RVXy ZtXy uvec ranef call terms ST

9.5734e-01 9.5734e-01 4.7861e-01 4.7861e-01 2.6398e-03 2.5024e-03 9.7656e-04

dims deviance cnames fixef RXy XytXy Gp

8.0872e-04 6.2561e-04 3.6621e-04 2.5177e-04 2.2125e-04 2.2125e-04 5.3406e-05

offset weights

3.8147e-05 3.8147e-05
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Conclusions

• There are several approaches to dealing with large data sets in
R.

• The fortune(122) approach is generally not terribly
successful.

• R is not a filter (in the sense that SAS and SPSS are).
• At present the model.matrix function always outputs a full

dense matrix. This is usually the point at which those working
with large data sets run into trouble.

• It is possible, but not easy, to work with horizontal sections of
the data and model matrix in the current formulation.

• The lmer function fits various types of mixed models using a
sparse matrices but does not go through model.matrix for the
sparse parts.

• The case of mixed models is somewhat special because
grouping factors can be represented as indicators and you
don’t need to watch for rank deficiencies.

• If both n and p are large (and if p grows with n) then
mixed-effects models are probably a reasonable approach.

• To fully realize the benefits of sparse matrix methods on the
fixed-effects size, we should extend model.matrix to create a
sparse matrix without any intermediate dense matrix.

• In some ways this is “back to the future” for some of us.
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