
What is Parallel Computing? Implementation Examples Closing Remarks

Adventures in HPC and R:
Going Parallel

Justin Harrington & Matias Salibian-Barrera

UNIVERSITY OF BRITISH COLUMBIA

The R User Conference 2006

What is Parallel Computing? Implementation Examples Closing Remarks

Outline

What is Parallel Computing?

Implementation

Examples

Closing Remarks

What is Parallel Computing? Implementation Examples Closing Remarks

What is Parallel Computing?

• From Wikipedia:
“Parallel computing is the simultaneous execution of the
same task (split up and specially adapted) on multiple
processors in order to obtain faster results.”

• Two specific situations:
• A multiprocessor machine
• A cluster of (homogeneous or heterogeneous) computers.

• R is inherently concurrent, even on a multiprocessor machine.
• S-Plus does have one function for multiprocessor machines.

Goal for todays talk:
To demonstrate the potential of incorporating parallel processing in
tasks for which it is appropriate.

What is Parallel Computing? Implementation Examples Closing Remarks

What is Parallel Computing?

• From Wikipedia:
“Parallel computing is the simultaneous execution of the
same task (split up and specially adapted) on multiple
processors in order to obtain faster results.”

• Two specific situations:
• A multiprocessor machine
• A cluster of (homogeneous or heterogeneous) computers.

• R is inherently concurrent, even on a multiprocessor machine.
• S-Plus does have one function for multiprocessor machines.

Goal for todays talk:
To demonstrate the potential of incorporating parallel processing in
tasks for which it is appropriate.



What is Parallel Computing? Implementation Examples Closing Remarks

What is Parallel Computing?
Example - Multiprocessor Machine

Features:
• Each process has the same

home directory.
• Architecture is identical.
• R has the same libraries in

the same locations.
• Data is passed through

resident memory.

What is Parallel Computing? Implementation Examples Closing Remarks

What is Parallel Computing?
Example - Heterogeneous Cluster of Machines

Features:
• Each process may not have

same home directory.
• Architecture might be

different.
• R may not have the same

libraries in the same locations.
• Data is passed through the

network.

.

What is Parallel Computing? Implementation Examples Closing Remarks

Implementation

• Tasks have to be appropriate.
• Concurrent, not sequential.
• It is possible sometimes to take a process inherently sequential,

and approximate with a concurrent process e.g. simulated
annealing.

• In order to do parallel computation, two things are required:
• An interface on the O/S that can receive and distribute tasks; and
• A means of communicating with that program from within R.

What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
PVM & MPI

• There are two common libraries:
• PVM: Parallel Virtual Machine
• MPI: Message Passing Interface

• Both are available through open-source for different
architectures.

• Which to use? From Geist, Kohl & Papadopoulos (1996):
• MPI is expected to be faster within a large multiprocessor.
• PVM is better when applications will be run over heterogeneous

networks.

• One of these programs need to be running on the host computer
before R can send them tasks.



What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
R

• In R there are three relevant packages:
• Rmpi - the interface to MPI;
• rpvm - the interface to PVM;
• snow - a “meta-package” with standardized functions.

• snow is an excellent introduction to parallel computation, and
appropriate for “embarrassingly parallel” problems.

• All of these packages are available from CRAN.
• In a environment where the home directories are not the same,

the required libraries have to be available on each host.

What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
Commands in snow

Administrative Routines
makeCluster create a new cluster of nodes
stopCluster shut down a cluster
clusterSetupSPRNG initialize random number streams

High Level Routines
parLapply parallel lapply
parSapply parallel sapply
parApply parallel apply

Basic Routines
clusterExport export variables to nodes
clusterCall call function to each node
clusterApply apply function to arguments on nodes
clusterApplyLB load balanced clusterApply
clusterEvalQ evaluate expression on nodes
clusterSplit split vector into pieces for nodes

What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
Commands in snow

Administrative Routines
makeCluster create a new cluster of nodes
stopCluster shut down a cluster
clusterSetupSPRNG initialize random number streams

High Level Routines
parLapply parallel lapply
parSapply parallel sapply
parApply parallel apply

Basic Routines
clusterExport export variables to nodes
clusterCall call function to each node
clusterApply apply function to arguments on nodes
clusterApplyLB load balanced clusterApply
clusterEvalQ evaluate expression on nodes
clusterSplit split vector into pieces for nodes

What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
Commands in snow

Administrative Routines
makeCluster create a new cluster of nodes
stopCluster shut down a cluster
clusterSetupSPRNG initialize random number streams

High Level Routines
parLapply parallel lapply
parSapply parallel sapply
parApply parallel apply

Basic Routines
clusterExport export variables to nodes
clusterCall call function to each node
clusterApply apply function to arguments on nodes
clusterApplyLB load balanced clusterApply
clusterEvalQ evaluate expression on nodes
clusterSplit split vector into pieces for nodes



What is Parallel Computing? Implementation Examples Closing Remarks

Implementation
Commands in snow

Administrative Routines
makeCluster create a new cluster of nodes
stopCluster shut down a cluster
clusterSetupSPRNG initialize random number streams

High Level Routines
parLapply parallel lapply
parSapply parallel sapply
parApply parallel apply

Basic Routines
clusterExport export variables to nodes
clusterCall call function to each node
clusterApply apply function to arguments on nodes
clusterApplyLB load balanced clusterApply
clusterEvalQ evaluate expression on nodes
clusterSplit split vector into pieces for nodes

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Bootstrapping MM-regression estimators

• The function roblm (from the library of the same name)
calculates the MM-regression estimators.

• Is also available in the library robustbase (see talk by Martin
Mächler and Andreas Ruckstuhl).

• Can use bootstrapping to calculate the empirical density of β̂.

library(roblm)
X <- data.frame(y=rnorm(500),

x=matrix(rnorm(500*20), 500, 20))
samples <- list()
for (i in 1:200)
samples[[i]] <- X[sample(1:500, replace=TRUE),]

rdctrl <- roblm.control(compute.rd=FALSE)

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Bootstrapping MM-regression estimators

• The function roblm (from the library of the same name)
calculates the MM-regression estimators.

• Is also available in the library robustbase (see talk by Martin
Mächler and Andreas Ruckstuhl).

• Can use bootstrapping to calculate the empirical density of β̂.

library(roblm)
X <- data.frame(y=rnorm(500),

x=matrix(rnorm(500*20), 500, 20))
samples <- list()
for (i in 1:200)
samples[[i]] <- X[sample(1:500, replace=TRUE),]

rdctrl <- roblm.control(compute.rd=FALSE)

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Bootstrapping MM-regression estimators

Non-parallel - Takes 196.53 seconds

lapply(samples,
function(x,z)
roblm(y~., data=x, control=z), z=rdctrl)

Parallel - 4 CPUS - Takes 54.52 seconds

cl <- makeCluster(4)
clusterEvalQ(cl, library(roblm))
clusterApplyLB(cl, samples,

function(x, z)
roblm(y~., data=x, control=z), z=rdctrl)

stopCluster(cl)



What is Parallel Computing? Implementation Examples Closing Remarks

Example
Bootstrapping MM-regression estimators

Non-parallel - Takes 196.53 seconds

lapply(samples,
function(x,z)
roblm(y~., data=x, control=z), z=rdctrl)

Parallel - 4 CPUS - Takes 54.52 seconds

cl <- makeCluster(4)
clusterEvalQ(cl, library(roblm))
clusterApplyLB(cl, samples,

function(x, z)
roblm(y~., data=x, control=z), z=rdctrl)

stopCluster(cl)

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Linear Grouping Analysis (LGA)

• Is a clustering algorithm that finds k groups around hyperplanes
of dimension d − 1 using orthogonal regression.

• First introduced in Van Aelst et al (2006) and is available as a
package in R at http://md.stat.ubc.ca/lga.

• The algorithm is given by
1. Initialization: Initial hyperplanes are defined by the exact fitting of k

sub-samples of size d .
2. Forming k groups: Each data point is assigned to its closest

hyperplane using Euclidean distances.
3. Computing k hyperplanes: New hyperplanes are computed

applying orthogonal regression to each group.
4. Steps 2) and 3) are repeated several times.

• This process is started from a number of random initializations,
and the best result selected.

• The number of starts depends on k , the relative sizes of the
groups, and d .

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Linear Grouping Analysis (LGA)

• Is a clustering algorithm that finds k groups around hyperplanes
of dimension d − 1 using orthogonal regression.

• First introduced in Van Aelst et al (2006) and is available as a
package in R at http://md.stat.ubc.ca/lga.

• The algorithm is given by
1. Initialization: Initial hyperplanes are defined by the exact fitting of k

sub-samples of size d .
2. Forming k groups: Each data point is assigned to its closest

hyperplane using Euclidean distances.
3. Computing k hyperplanes: New hyperplanes are computed

applying orthogonal regression to each group.
4. Steps 2) and 3) are repeated several times.

• This process is started from a number of random initializations,
and the best result selected.

• The number of starts depends on k , the relative sizes of the
groups, and d .

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Linear Grouping Analysis (LGA)

• Is a clustering algorithm that finds k groups around hyperplanes
of dimension d − 1 using orthogonal regression.

• First introduced in Van Aelst et al (2006) and is available as a
package in R at http://md.stat.ubc.ca/lga.

• The algorithm is given by
1. Initialization: Initial hyperplanes are defined by the exact fitting of k

sub-samples of size d .
2. Forming k groups: Each data point is assigned to its closest

hyperplane using Euclidean distances.
3. Computing k hyperplanes: New hyperplanes are computed

applying orthogonal regression to each group.
4. Steps 2) and 3) are repeated several times.

• This process is started from a number of random initializations,
and the best result selected.

• The number of starts depends on k , the relative sizes of the
groups, and d .



What is Parallel Computing? Implementation Examples Closing Remarks

Example
Linear Grouping Analysis (LGA)

• We have a list hpcoef containing m matrices that specify each
of the starting k hyperplanes.

• We wish to iterate from these starting hyperplanes with the
function lga.iterate.

• In this example, the dataset has n = 10, 000, k = 4, d = 2.

Non-parallel - Takes 851 seconds

outputsl <- lapply(hpcoef, lga.iterate,
xsc, k, d, n, niter)

Parallel - 4 CPUS - Takes 230 seconds

cl <- makeCluster(4)
outputsl <- clusterApplyLB(cl, hpcoef, lga.iterate,

xsc, k, d, n, niter)
stopCluster(cl)

What is Parallel Computing? Implementation Examples Closing Remarks

Example
Linear Grouping Analysis (LGA)

• We have a list hpcoef containing m matrices that specify each
of the starting k hyperplanes.

• We wish to iterate from these starting hyperplanes with the
function lga.iterate.

• In this example, the dataset has n = 10, 000, k = 4, d = 2.

Non-parallel - Takes 851 seconds

outputsl <- lapply(hpcoef, lga.iterate,
xsc, k, d, n, niter)

Parallel - 4 CPUS - Takes 230 seconds

cl <- makeCluster(4)
outputsl <- clusterApplyLB(cl, hpcoef, lga.iterate,

xsc, k, d, n, niter)
stopCluster(cl)

What is Parallel Computing? Implementation Examples Closing Remarks

Closing Remarks

• With a small amount of preparation, it is relatively simple to
implement parallel programming for suitable problems.

• The technology for small scale implementations is available to
most researchers.

• The efficiency gains versus effort expended makes parallel
computation something to seriously consider.

• However, when working in a heterogeneous computing
environment, care needs to be taken!


