
R
FUTURE
DIRECTIONS

BRIXEN
June 2014

Speaker

Jan Vitek

Professor of Computer Science

Purdue University, USA

PHD: University of Geneva, CH

Speciality: Programming languages, Compilers

What have we done so far…

•TracR — a trace analysis / profiler for GNU-R	

•CoreR — a formal semantics for a fragment of R	

•TestR — a testing framework for the R language	

• FastR — a new R virtual machine written in Java

Morandat, Hill, Osvald, Vitek. Evaluating the Design of the R Language. ECOOP’12

Kalibera, Maj, Morandat, Vitek. A Fast abstract syntax tree interpreter for R. VEE’14

FastR (speedup 8.5x GNURast)
Java cup

0.00

0.25

0.50

0.75

1.00

bt
1

bt
2

bt
3

pr
1

pr
2

fa
1

fa
2

fa
3

fa
4

fa
5 fr1 fr2 kn
1

kn
2

kn
3

kn
4

m
a1

m
a2

m
a3

m
a4 nb
1

nb
2

nb
3

nb
4

nb
5

pd
1

rd
1

rc
1

rc
2

rc
3

sn
1

sn
2

sn
3

sn
4

sn
5

sn
6

sn
7

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

FastR GNUR−BC

Relative Time of FastR and GNUR−BC over GNUR−AST

Figure 13. Shootout Relative Execution Times (lower is better). Geo. mean speedup for FastR is 8.5x and 1.8x for GNUR-BC.

0.00

0.25

0.50

0.75

1.00

m
c1

m
c2

m
c3

m
c4

m
c5 m
f1

m
f2

m
f3

m
f4

m
f5 pr
1

pr
2

pr
3

pr
4

pr
5

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

FastR GNUR−BC

Relative Time of FastR and GNUR−BC over GNUR−AST

Figure 14. Benchmark 2.5 Relative Execution Times (lower is better). Geo. mean speedup FastR is 1.7x and 1.1x for GNUR-BC.

stored in the R Frame). Moreover, FastR’s return elision op-
timization avoids executing the return statement completely
in the bt benchmarks.

Fusion. Our implementation of fusion of view trees into
Java byte-code, on average, provides no performance change

on the b25 and the shootout benchmarks (numbers shown in
graphs are without fusion). Lacking a realistic application
that would stress vector computation, we use a trivial micro-
benchmark to validate the potential speed-up of fusion. We
measure the time to compute a sequence of commands x =

y + z * y + z - 2 * (8 + z); x[[1]] = 3 for primitive

PERFORMANCE

Evaluating the Design of R 15

S−
1

S−
2

S−
3

S−
4

S−
5

S−
6

S−
7

S−
8

S−
9

S−
10

S−
11

S−
12 Av
g

1
5

10
50

50
0

Python R

Name Input
S-1 Binary trees 16
S-2 Fankuch redux 10
S-3 Fasta 2.5M
S-4 Fasta redux 2.5M
S-5 K-nucleotide 50K
S-6 Mandelbrot 4K
S-7 N-body 500K
S-8 Pidigits 500
S-9 Regex-dna 2.5K
S-10 Rev. complement 5M
S-11 Spectral norm 640
S-12 Spectral norm alt 11K

Fig. 6. Slowdown of Python and R, normalized to C for the Shootout benchmarks.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

mm
alloc.cons
alloc.list
alloc.vector
duplicate
lookup
match
external
builtin
arith
special

Fig. 7. Time breakdown of Bioconductor vignettes.

To understand where the
time is spent, we turn to more
representative R programs. Fig. 7
shows the breakdown of execu-
tion times in the Bioconductor
dataset obtained with ProfileR.
Each bar represents a Biocon-
ductor vignette. The key obser-
vation is that memory manage-
ment accounts for an average of
29% of execution time. Memory
management time was further
broken down into time spent in
garbage collection (18.7%), al-
locating cons-pairs (3.6%), vec-
tors (2.6%), and duplications
(4%) for call-by-value seman-
tics. The time spent in built-
in functions represents the true
computational work performed
by R, this is on average 38% of execution time. There are some interesting outliers.
The maximum spent in garbage collection is 70% and there is a program that spends
63% copying arguments. The lookup and match categories (4.3% and 1.8%) repre-
sent time spent looking up variables and matching parameters with arguments. Both of
these would be absent in a more static language like C as they are resolved at compile
time. Variable lookup will also be absent in Lisp or Scheme as, once bound, position
of variables in a frame are known. Given the nature of R, many of the core numerical
functions are written in C or Fortran. This can lead to the perception that execution time
is dominated by native libraries. Looking at the amount of time spent in calls to foreign

Performance relative to C	

Shootout Time breakdown	

Evaluating the Design of R 15

S−
1

S−
2

S−
3

S−
4

S−
5

S−
6

S−
7

S−
8

S−
9

S−
10

S−
11

S−
12 Av
g

1
5

10
50

50
0

Python R

Name Input
S-1 Binary trees 16
S-2 Fankuch redux 10
S-3 Fasta 2.5M
S-4 Fasta redux 2.5M
S-5 K-nucleotide 50K
S-6 Mandelbrot 4K
S-7 N-body 500K
S-8 Pidigits 500
S-9 Regex-dna 2.5K
S-10 Rev. complement 5M
S-11 Spectral norm 640
S-12 Spectral norm alt 11K

Fig. 6. Slowdown of Python and R, normalized to C for the Shootout benchmarks.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

mm
alloc.cons
alloc.list
alloc.vector
duplicate
lookup
match
external
builtin
arith
special

Fig. 7. Time breakdown of Bioconductor vignettes.

To understand where the
time is spent, we turn to more
representative R programs. Fig. 7
shows the breakdown of execu-
tion times in the Bioconductor
dataset obtained with ProfileR.
Each bar represents a Biocon-
ductor vignette. The key obser-
vation is that memory manage-
ment accounts for an average of
29% of execution time. Memory
management time was further
broken down into time spent in
garbage collection (18.7%), al-
locating cons-pairs (3.6%), vec-
tors (2.6%), and duplications
(4%) for call-by-value seman-
tics. The time spent in built-
in functions represents the true
computational work performed
by R, this is on average 38% of execution time. There are some interesting outliers.
The maximum spent in garbage collection is 70% and there is a program that spends
63% copying arguments. The lookup and match categories (4.3% and 1.8%) repre-
sent time spent looking up variables and matching parameters with arguments. Both of
these would be absent in a more static language like C as they are resolved at compile
time. Variable lookup will also be absent in Lisp or Scheme as, once bound, position
of variables in a frame are known. Given the nature of R, many of the core numerical
functions are written in C or Fortran. This can lead to the perception that execution time
is dominated by native libraries. Looking at the amount of time spent in calls to foreign

Heap Memory	

Shootout

16 Morandat et al.

functions shows that this is clearly not the case. On average, the time spent in foreign
calls amounts to only 22% of the run-time.

6.2 Memory

Not only is R slow, but it also consumes significant amounts of memory. Unlike C
where data can be stack allocated, all user data in R must be heap allocated and garbage
collected. Fig. 8 compares heap memory usage in C (calls to malloc) and data allocated
by the R virtual machine. The R allocation is split between vectors (which are typically
user data) and lists (which are mostly used by the interpreter for, e.g., arguments to
functions). The graph clearly shows that R allocates orders of magnitude more data than
C. It also shows that, in many cases, the internal data required is more than the user data.
Call-by-value semantics are implemented by a copy-on-write (COW) mechanism. Thus,
under the covers, arguments are shared and only duplicated if there is actually a need
to. Avoiding duplication reduces memory footprint. Even though the COW algorithm is
really simple, on average only 37% of arguments are copied.

S−
1

S−
2

S−
3

S−
4

S−
5

S−
6

S−
7

S−
8

S−
9

S−
10

S−
11

S−
12

1
10

10
0

10
00

10
00

0

C R User data R internal

Fig. 8. Heap allocated memory (MB log scale). C vs. R.

Lists are created by pairlist().
As mentioned above, they are
mostly used by the R VM. In
fact, the standard library only
has three calls to pairlist, the
whole CRAN code only eight,
and Bioconductor none. The R
VM uses them to represent code
and to pass and process func-
tion call arguments. It is inter-
esting to note that the time spent
on allocating lists is greater than
the time spent on vectors. Cons
cells are 56 byte long, and take
up 23 GB on average in the
Shootout benchmarks.

Another reason for the large
footprint is that all numeric data
has to be boxed into a vector.
Yet, 36% of vectors allocated in
the Bioconductor vignettes con-
tain only a single numeric value.
An empty vector is 40 bytes long; 10⇥ larger than a native integer. The costs involved
in allocating and freeing these vectors, and the fact that even simple arithmetic requires
following references in the heap, further impacts run-time.

Observations. R is clearly slow and memory inefficient. Much more so than other
dynamic languages. This is largely due to the combination of language features (call-
by-value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types.

16 Morandat et al.

functions shows that this is clearly not the case. On average, the time spent in foreign
calls amounts to only 22% of the run-time.

6.2 Memory

Not only is R slow, but it also consumes significant amounts of memory. Unlike C
where data can be stack allocated, all user data in R must be heap allocated and garbage
collected. Fig. 8 compares heap memory usage in C (calls to malloc) and data allocated
by the R virtual machine. The R allocation is split between vectors (which are typically
user data) and lists (which are mostly used by the interpreter for, e.g., arguments to
functions). The graph clearly shows that R allocates orders of magnitude more data than
C. It also shows that, in many cases, the internal data required is more than the user data.
Call-by-value semantics are implemented by a copy-on-write (COW) mechanism. Thus,
under the covers, arguments are shared and only duplicated if there is actually a need
to. Avoiding duplication reduces memory footprint. Even though the COW algorithm is
really simple, on average only 37% of arguments are copied.

S−
1

S−
2

S−
3

S−
4

S−
5

S−
6

S−
7

S−
8

S−
9

S−
10

S−
11

S−
12

1
10

10
0

10
00

10
00

0

C R User data R internal

Fig. 8. Heap allocated memory (MB log scale). C vs. R.

Lists are created by pairlist().
As mentioned above, they are
mostly used by the R VM. In
fact, the standard library only
has three calls to pairlist, the
whole CRAN code only eight,
and Bioconductor none. The R
VM uses them to represent code
and to pass and process func-
tion call arguments. It is inter-
esting to note that the time spent
on allocating lists is greater than
the time spent on vectors. Cons
cells are 56 byte long, and take
up 23 GB on average in the
Shootout benchmarks.

Another reason for the large
footprint is that all numeric data
has to be boxed into a vector.
Yet, 36% of vectors allocated in
the Bioconductor vignettes con-
tain only a single numeric value.
An empty vector is 40 bytes long; 10⇥ larger than a native integer. The costs involved
in allocating and freeing these vectors, and the fact that even simple arithmetic requires
following references in the heap, further impacts run-time.

Observations. R is clearly slow and memory inefficient. Much more so than other
dynamic languages. This is largely due to the combination of language features (call-
by-value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types.

16 Morandat et al.

functions shows that this is clearly not the case. On average, the time spent in foreign
calls amounts to only 22% of the run-time.

6.2 Memory

Not only is R slow, but it also consumes significant amounts of memory. Unlike C
where data can be stack allocated, all user data in R must be heap allocated and garbage
collected. Fig. 8 compares heap memory usage in C (calls to malloc) and data allocated
by the R virtual machine. The R allocation is split between vectors (which are typically
user data) and lists (which are mostly used by the interpreter for, e.g., arguments to
functions). The graph clearly shows that R allocates orders of magnitude more data than
C. It also shows that, in many cases, the internal data required is more than the user data.
Call-by-value semantics are implemented by a copy-on-write (COW) mechanism. Thus,
under the covers, arguments are shared and only duplicated if there is actually a need
to. Avoiding duplication reduces memory footprint. Even though the COW algorithm is
really simple, on average only 37% of arguments are copied.

S−
1

S−
2

S−
3

S−
4

S−
5

S−
6

S−
7

S−
8

S−
9

S−
10

S−
11

S−
12

1
10

10
0

10
00

10
00

0

C R User data R internal

Fig. 8. Heap allocated memory (MB log scale). C vs. R.

Lists are created by pairlist().
As mentioned above, they are
mostly used by the R VM. In
fact, the standard library only
has three calls to pairlist, the
whole CRAN code only eight,
and Bioconductor none. The R
VM uses them to represent code
and to pass and process func-
tion call arguments. It is inter-
esting to note that the time spent
on allocating lists is greater than
the time spent on vectors. Cons
cells are 56 byte long, and take
up 23 GB on average in the
Shootout benchmarks.

Another reason for the large
footprint is that all numeric data
has to be boxed into a vector.
Yet, 36% of vectors allocated in
the Bioconductor vignettes con-
tain only a single numeric value.
An empty vector is 40 bytes long; 10⇥ larger than a native integer. The costs involved
in allocating and freeing these vectors, and the fact that even simple arithmetic requires
following references in the heap, further impacts run-time.

Observations. R is clearly slow and memory inefficient. Much more so than other
dynamic languages. This is largely due to the combination of language features (call-
by-value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types.

16 Morandat et al.

functions shows that this is clearly not the case. On average, the time spent in foreign
calls amounts to only 22% of the run-time.

6.2 Memory

Not only is R slow, but it also consumes significant amounts of memory. Unlike C
where data can be stack allocated, all user data in R must be heap allocated and garbage
collected. Fig. 8 compares heap memory usage in C (calls to malloc) and data allocated
by the R virtual machine. The R allocation is split between vectors (which are typically
user data) and lists (which are mostly used by the interpreter for, e.g., arguments to
functions). The graph clearly shows that R allocates orders of magnitude more data than
C. It also shows that, in many cases, the internal data required is more than the user data.
Call-by-value semantics are implemented by a copy-on-write (COW) mechanism. Thus,
under the covers, arguments are shared and only duplicated if there is actually a need
to. Avoiding duplication reduces memory footprint. Even though the COW algorithm is
really simple, on average only 37% of arguments are copied.

S
−1

S
−2

S
−3

S
−4

S
−5

S
−6

S
−7

S
−8

S
−9

S
−1

0

S
−1

1

S
−1

2

1
10

10
0

10
00

10
00

0

C R User data R internal

Fig. 8. Heap allocated memory (MB log scale). C vs. R.

Lists are created by pairlist().
As mentioned above, they are
mostly used by the R VM. In
fact, the standard library only
has three calls to pairlist, the
whole CRAN code only eight,
and Bioconductor none. The R
VM uses them to represent code
and to pass and process func-
tion call arguments. It is inter-
esting to note that the time spent
on allocating lists is greater than
the time spent on vectors. Cons
cells are 56 byte long, and take
up 23 GB on average in the
Shootout benchmarks.

Another reason for the large
footprint is that all numeric data
has to be boxed into a vector.
Yet, 36% of vectors allocated in
the Bioconductor vignettes con-
tain only a single numeric value.
An empty vector is 40 bytes long; 10⇥ larger than a native integer. The costs involved
in allocating and freeing these vectors, and the fact that even simple arithmetic requires
following references in the heap, further impacts run-time.

Observations. R is clearly slow and memory inefficient. Much more so than other
dynamic languages. This is largely due to the combination of language features (call-
by-value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types.

SPECIFICATION

12 Morandat et al.

The ! relation has fourteen rules dealing with expressions, shown in Fig. 5, along
with some auxiliary definitions given in Fig. 18 (where s and g denote functions that
convert the type of their argument to a string and vector respectively). The first two
rules deal with numeric and string literals. They simply allocate a vector of length one
of the corresponding type with the specified value in it. By default, attributes for these
values are empty. A function declaration, [FUN], allocates a closure in the heap and

[NUM]
⌫ fresh ↵ = ??
H 0 = H[⌫/num[n]↵]

n� ; H ! ⌫; H 0

[STR]
⌫ fresh ↵ = ??
H 0 = H[⌫/str[s]↵]

s� ; H ! ⌫; H 0

[FUN]
⌫ fresh ↵ = ??
H 0 = H[⌫/�f.e, � ↵]

function(f) e� ; H ! ⌫; H 0

[FIND]
� (H, x) = u

x� ; H ! u; H

[GETP]
H(�) = ⌫

� � ; H ! ⌫; H 0

[ASS]
cpy(H, ⌫) = H 0, ⌫0 � = ◆ ⇤ � 0 H(◆) = F F 0 = F [x/⌫0] H 00 = H 0[◆/F 0]

x<� ⌫ � ; H ! ⌫; H 00

[DASS]
cpy(H, ⌫) = H 0, ⌫0 � = ◆ ⇤ � 0

assign(x, ⌫0, � 0, H 0) = H 00

x<<� ⌫ � ; H ! ⌫; H 00

[GET]
� (H, x) = ⌫0 readn(⌫, H) = m get(⌫0, m, H) = ⌫00, H 0

x[[⌫]] � ; H ! ⌫00; H 0

[SETL]
cpy(H, ⌫0) = H 0, ⌫00 � = ◆ ⇤ � 0 ◆(H 0, x) = ⌫000

readn(⌫, H 0) = m set(⌫000, m, ⌫00, H 0) = H 00

x[[⌫]] <� ⌫0 � ; H ! ⌫0; H 00

[SETG]
cpy(H, ⌫0) = H 0, ⌫00 � = ◆ ⇤ � 0 H 0(◆) = F x 62 F � 0(H 0, x) = ⌫000

cpy(H 0, ⌫000) = H 00, ⌫0000 F 0 = F [x/⌫0000] H 000 = H 00[◆/F 0]
readn(⌫, H) = m set(⌫0000, m, ⌫00, H 000) = H 0000

x[[⌫]] <� ⌫0 � ; H ! ⌫0; H 0000

[GETA]
H(⌫) = ↵ ↵ = ⌫? ⌫0? index(⌫0, ⌫0?, H) = n get(⌫?, n, H) = ⌫00

attr(⌫, ⌫0) � ; H ! ⌫00; H
[REPLA]

H(⌫) = ↵ ↵ = ⌫? ⌫0? index(⌫0, ⌫0?, H) = n set(⌫, n, ⌫00, H) = H 0

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 0

[SETA]

cpy(H, ⌫00) = H 0, ⌫000 H 0(⌫) = ⌫? ⌫0?
index(⌫0, ⌫0?, H 0) = ? reads(⌫0, H 0) = s

H 0(⌫?) = gen[⌫]↵ H 0(⌫0?) = str[s]↵
0

H 00 = H 0[⌫?/gen[⌫⌫000]↵][⌫0?/str[ss]↵
0
]

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 00

[SETB]
cpy(H, ⌫00) = H 0, ⌫3 H 0(⌫) = ?? ⌫4, ⌫5

fresh reads(⌫0, H 0) = s

H 00 = H 0[⌫4/gen[⌫3]??][⌫5/str[s]??]

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 00

Fig. 5. Reduction relation ! .

12 Morandat et al.

The ! relation has fourteen rules dealing with expressions, shown in Fig. 5, along
with some auxiliary definitions given in Fig. 18 (where s and g denote functions that
convert the type of their argument to a string and vector respectively). The first two
rules deal with numeric and string literals. They simply allocate a vector of length one
of the corresponding type with the specified value in it. By default, attributes for these
values are empty. A function declaration, [FUN], allocates a closure in the heap and

[NUM]
⌫ fresh ↵ = ??
H 0 = H[⌫/num[n]↵]

n� ; H ! ⌫; H 0

[STR]
⌫ fresh ↵ = ??
H 0 = H[⌫/str[s]↵]

s� ; H ! ⌫; H 0

[FUN]
⌫ fresh ↵ = ??
H 0 = H[⌫/�f.e, � ↵]

function(f) e� ; H ! ⌫; H 0

[FIND]
� (H, x) = u

x� ; H ! u; H

[GETP]
H(�) = ⌫

� � ; H ! ⌫; H 0

[ASS]
cpy(H, ⌫) = H 0, ⌫0 � = ◆ ⇤ � 0 H(◆) = F F 0 = F [x/⌫0] H 00 = H 0[◆/F 0]

x<� ⌫ � ; H ! ⌫; H 00

[DASS]
cpy(H, ⌫) = H 0, ⌫0 � = ◆ ⇤ � 0

assign(x, ⌫0, � 0, H 0) = H 00

x<<� ⌫ � ; H ! ⌫; H 00

[GET]
� (H, x) = ⌫0 readn(⌫, H) = m get(⌫0, m, H) = ⌫00, H 0

x[[⌫]] � ; H ! ⌫00; H 0

[SETL]
cpy(H, ⌫0) = H 0, ⌫00 � = ◆ ⇤ � 0 ◆(H 0, x) = ⌫000

readn(⌫, H 0) = m set(⌫000, m, ⌫00, H 0) = H 00

x[[⌫]] <� ⌫0 � ; H ! ⌫0; H 00

[SETG]
cpy(H, ⌫0) = H 0, ⌫00 � = ◆ ⇤ � 0 H 0(◆) = F x 62 F � 0(H 0, x) = ⌫000

cpy(H 0, ⌫000) = H 00, ⌫0000 F 0 = F [x/⌫0000] H 000 = H 00[◆/F 0]
readn(⌫, H) = m set(⌫0000, m, ⌫00, H 000) = H 0000

x[[⌫]] <� ⌫0 � ; H ! ⌫0; H 0000

[GETA]
H(⌫) = ↵ ↵ = ⌫? ⌫0? index(⌫0, ⌫0?, H) = n get(⌫?, n, H) = ⌫00

attr(⌫, ⌫0) � ; H ! ⌫00; H
[REPLA]

H(⌫) = ↵ ↵ = ⌫? ⌫0? index(⌫0, ⌫0?, H) = n set(⌫, n, ⌫00, H) = H 0

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 0

[SETA]

cpy(H, ⌫00) = H 0, ⌫000 H 0(⌫) = ⌫? ⌫0?
index(⌫0, ⌫0?, H 0) = ? reads(⌫0, H 0) = s

H 0(⌫?) = gen[⌫]↵ H 0(⌫0?) = str[s]↵
0

H 00 = H 0[⌫?/gen[⌫⌫000]↵][⌫0?/str[ss]↵
0
]

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 00

[SETB]
cpy(H, ⌫00) = H 0, ⌫3 H 0(⌫) = ?? ⌫4, ⌫5

fresh reads(⌫0, H 0) = s

H 00 = H 0[⌫4/gen[⌫3]??][⌫5/str[s]??]

attr(⌫, ⌫0) <� ⌫00 � ; H ! ⌫00; H 00

Fig. 5. Reduction relation ! .

� = ◆ ⇤ � 0 H(◆) = F F
[A

F F 0 = F [x/⌫0] H 00 = H 0[◆/F 0]

45% of assignments are definitions 	

!

only 2 out of 217 million assignments
are definitions in a parent frame 	

!

99.9% of side effects are local

!

c <- 42 c <- 42
 d <- c
c(1,2,3) d(1,2,3)
!

[1] 1 2 3 Error: could  
 not find  
 function "d"

less than 0.05% context sensitive function
name lookups	

!

only symbols that rely on it are c and
file

OBJECTS

Evaluating the Design of R 23

Bioc Misc CRAN Base Total

S3

classes 1 535 0 3 351 191 3 860
methods 1 008 0 1 924 289 2 438
Avg. redef. 6.23 0 7.26 4.25 9.75
Method calls 13M 58M - - 76M
Super calls 697K 1.2M - - 2M

S4

classes 1 915 2 1 406 63 2 893
singleton 608 2 370 28 884
leaves 819 0 621 16 1 234
Hier. depth 9 1 8 4 9
Direct supers 1.09 0 1.13 0.83 1.07
methods 4 136 22 2 151 24 5 557
Avg. redef. 3 1 3.9 2.96 3.26
Redef. depth 1.12 1 1.21 1.08 1.14
new 668K 64 - - 668K
Method calls 15M 266 - - 15M
Super calls 94K 0 - - 94K

Fig. 15. Object usage in the corpus.

Fig. 15 summarizes the use
of object-orientation in the cor-
pus. In our corpus, 1 055 S3
classes, or roughly one fourth of
all classes, have no methods de-
fined on them and 1 107 classes,
30%, have only a print or plot
method. Fig. 16 gives the number
of redefinitions of S3 methods.
Any number of definitions larger
than one suggest some polymor-
phism. Unsurprisingly, plot and
print dominate. While impor-
tant, does the need for these two
functions really justify an object
system? Attributes already allow
the programmer to tag values,
and could easily be used to store closures for a handful of methods like print and
plot. A prototype-based system would be simpler and probably more efficient than
the S3 object system. Finally, only 30% of S3 classes are really object-oriented. This
translates to one class for every two packages. This is quite low and makes rewriting
them as S4 objects seem feasible. Doing so could simplify and improve both R code and
the evaluator code.

0 1 2 3 4 5 6 7 8 9 10
11
−1

2
13
−1

4
15
−1

9
20
−2

4
24
−2

9
30
−3

9
40
−4

9
50
−6

9
70
−9

9
10

0−
19

9
20

0−
29

9
30

0−
40

2
99

6
>

10
00

0
10

0
20

0
30

0
40

0
50

0

Fig. 16. S3 method redefinitions (on x axis).

S4 objects on the other hand, seem to
be used in a more traditional way. The
class hierarchies are not deep (maximum
is 9), however they are not flat either. The
number of parent classes is surprisingly
low (see [5] for comparison), but reaches
a maximum of 50 direct super-classes.
In Fig. 15, singleton classes, i.e., classes
which are both root and leaf, are ignored.
At first glance, the number of method re-
definitions seems to be a bit smaller than
what we find in other object languages.
This is partially explained by the absence
of a root class, the use of class unions,
and because multi-methods are declared
outside of classes. The number of redefinitions, i.e., one method applied to a more
specific class, is very low (only 1 in 25 classes). This pattern suggests that the S4 object
model is mostly used to overcome an absence of structure declarations rather than to add
objects in statistical computing. Even when biased by Bioconductor, which pushes for
S4 adoption, the use of S4 classes remains low. Part of the reason may be the perception
that S3 classes are less verbose and clumsy to write than S4; it may also come from the
fact that the base libraries use S3 classes intensively and this is reflected in our data.

TYPES

x <- y!
!

x : like D[20,20] <- y!
!

x : D[20,20] <- y!
!

x : D[dim(y)] <- y

DATA LAYOUT

1:1000000!
!

x[[300035]]

CONCURRENCY
x <<- 1 || x <<- 3

IMPLEMENTATIONS

Implem.!
language

Project
start/end KLOC

Effort!
Man/

month
Percent!

Complete
Missing!

parts Challenges Time sinks

GNUR C
(Fortran)

1993 -
… 500+ ? 99.9 ? ? ?

RIPOSTE C++ 2010 -
… 30 40 75 Lang

10 Libs

Std libs, pkgs,
search paths,

locked envs, FFIs
Specification

Too large internal surface,
src/main too big, messy

headers, Fortran

RENJIN Java 2010 -
… ? 8 78

primitives

S4 exports, R
compatibility,
native code

JIT, data layout,
C->R internals

TERR C++ 2009 -
… 500 264 75 R compatibility,

Graphics
Clean-room imp

Specification
Native code

S3,S4, data.frame,
model.frame, native

interface

ORBIT C
(Fortran)

2011 -
2014 10 12 90+ Some bugs Complexity of

runtime Manual specializations

FastR
.168 Java 2012 -

2013 72 20 50 - 1/∞
R compatibility,

graphics, internals,
native interface, …

Specification
Internals,

manual specialization,
Truffle, benchmarks

FastR Java 2013 -
… 51 30 70 Lang

49 Libs
R compatibility,

Graphics, promises,
frames/envs

Specification R compatibility, vector
ops, frames/envs.

the road ahead

