
Parallel External Memory 
Algorithms Using 
Reference Classes

Lee Edlefsen, Ph.D. Chief Scientist

Sue Ranney, Ph.D. Chief Data Scientist

1

Prepared for DSC 2014, June 2014



2

Introduction
 In many fields, the size of data sets is increasing more rapidly than 

the speed of single cores, of RAM, and of hard drives 

 In addition, data is being collected and stored in distributed locations

 In some applications it is also important to be able to update 

computations as new data is obtained

 To deal with this, there is increasing need for statistical and machine 

learning code that does not require all data to be in memory and  

that can distribute computations across cores, computers, and time 

 Parallel External Memory Algorithms provide a foundation for such 

software



3

RevoPemaR

 An R package providing a framework for writing Parallel External 

Memory Algorithms (PEMA’s)

 Uses Reference Classes

 Code can be written, tested, and run using data in memory on one 

computer, and then can be deployed to a variety of distributed 

compute contexts, using a variety of data sources

 An experimental version of this package is being released this 

summer as part of Revolution R Enterprise 7.2, under the Apache 

2.0 license

 This framework is based on, and is very similar to, a C++ framework 

we have used for several years in RevoScaleR to implement 

extremely high performance statistical and machine learning 

algorithms; the main difference is that the C++ framework supports 

the use of multiple cores via threading



4

Features of code written using the 
RevoPemaR framework

 Scalable: it can process an unlimited number of rows of data in a 

fixed amount of RAM, even on a single core

 Distributable: it is distributable across processes on a single 

computer and across nodes of a cluster

 Updateable: existing results can be updated given new data

 Portable: 

– With respect to platforms: it can be executed on a wide variety of 

computing platforms, including the parallel and distributed platforms 

supported by Revolution’s RevoScaleR package (Teradata, IBM Platform 

LSF, Microsoft HPC Server, and various flavors of Hadoop) 

– With respect to data sources: it can also use a wide variety of data 

sources, including those available in RevoScaleR

The same code will run on small and huge data, on a single core and 

on multiple SMP cores, on a single node and on multiple nodes.



5

Reference classes

Object oriented system in R that is similar to those 

in Java, C++

Fields of RC objects are mutable; they are not 

copied upon modification

Methods belong to objects, can operate on the 

fields of the object, and all methods see the 

changes made by any method to a field

 Introduced in R 2.12, by John Chambers

 Is a special S4 class that wraps an environment



6

External memory algorithms (EMA’s)

 Algorithms that do not require all data to be in RAM

 Data is processed sequentially, a chunk at a time, with intermediate 

results produced for each chunk

 Intermediate results for one chunk of data can be combined with 

those of another chunk

 Such algorithms are widely available for statistical and machine 

learning methods



7

Example external memory algorithm for 
the mean of a variable

 initialize method: sum=0, totalObs=0

 processData method: for each chunk of x; sum = sum + sum(x), 

totalObs = totalObs + length(x)

 updateResults method: 

– sum12 = sum1 + sum2

– totalObs12 = totalObs1 + totalObs2

 processResults method: mean = sum / totalObs



8

Parallel external memory algorithms 
(PEMA’s)

 PEMA’s are implementations of EMA’s that allow them to be 

executed on multiple cores and computers

 Chunks of data are processed in parallel, as well as sequentially

 To write such algorithms, the inherently sequential parts of the 

computation must be separated from the parallelizable parts

 For example, for iterative algorithms such a maximum likelihood 

(e.g. IRLS for glm), each iteration depends upon the previous one so 

the iterations cannot be run in parallel. However, the computations 

for each iteration can often be parallelized, and this is usually where 

most of the time is spent in any case.

 Keys to efficiency 

– avoid inter-thread and inter-process communication as much as possible

– rapidly get chunks of data to the processData methods



9

Another view of a Pema

Also note that Pema is 

Tibetan for Lotus flower, 

an important Buddhist 

symbol: it grows in 

muddy water, rising and 

blooming above the 

murk to achieve 

enlightenment.



10

The RevoPemaR package provides

 PemaBaseClass, which is a Reference Class

– Pema classes need to inherit from (contain) this

– This class has several methods which can be overridden by child 

classes. The key methods that are typically overridden are:

• initialize() – initialize fields; used on construction

• processData() – computes intermediate results from a chunk of 

data

• updateResults() – updates one pema object from another one

• processResults() – converts intermediate results to final results

– The compute() method provides an entry point for doing 

computations; the default compute() method will work for both 

iterative and non-iterative algorithms



11

The RevoPemaR package also provides

 setPemaClass() function: a wrapper around setRefClass() to create 

a class generator

 pemaCompute() function: a function to initiate a computation

 Example code:

– PemaMean: variable mean

– PemaWordCount, PemaPopularWords: text mining

– PemaGradDescent, PemaLogitGD: a gradient descent base 

class and a logistic regression child



12

Why reference classes?

 Efficiency and lowered memory usage 

– RC’s allow control over when objects are copied

– Member variables (fields) do not have to be passed as arguments to 

other methods 

 Encapsulation

– The data and the methods that operate on them are bundled

– Access methods and field locking provide control over access to fields

 Convenience

– It is possible to do the same things in other ways in R, but RC’s are more 

convenient

 Familiarity

– Familiar OOP system for Java, C++, and other programmers



13

Typical steps in using RevoPemaR

 Write the class definition, using setPemaClass(), and inheriting from 

RevoBaseClass or a child class

 Specify the fields (member variables) of the class

 Override the initialize(), processData(), updateResults(), 

processResults() and any other required methods

 Test the individual methods as they are being written; data in 

memory (data frame, vector, matrix) can be used, or any of the 

RevoScaleR data sources

 Execute the code using the pemaCompute() function or the 

compute() method



14

The default compute() method

"compute" = function(inData = NULL, outData = NULL)

{

'The main computation loop; handles both single- and multi-iteration algorithms'

for (iterLocal in seq.int(1, maxIters))

{

initIteration(iterLocal)

processAllData(inData, outData) 

result <- processResults()

if (hasConverged()) 

{

invisible(return(createReturnObject(result)))

}

}

invisible(return(createReturnObject(result)))

},



15

processAllData(inData, outData)

 processAllData() makes a pass through all of the data

 Upon return, the relevant fields of the master Pema object will 

contain results for all of the data

 This method is where all of the parallel/distributed computations are 

done

 In the initial implementation, the computations call into the 

RevoScaleR C++ code to loop over data and to distribute the 

computations, unless the data is already in memory



16

Overview of how things work on a single 
process
 The underlying framework loops over the input data, reading it a 

chunk (contiguous rows for selected columns) at a time

 The processData method of the Pema object is called once for each 

chunk of data

– the fields of the object are updated from the data 

– in addition, a data frame may be returned from processData(), and will be 

written to an output data source

 processData() is called repeatedly until all of the data assigned to 

that process has been used

 processAllData() returns and processResults() is then called on the 

Pema object to convert intermediate results to final results

 hasConverged(), whose default returns TRUE, is called, and either 

the results are returned to the user or another iteration is started



17

Overview for multiple processes

 One process acts as the master, and the others as workers

 The master process controls the computations

– This process may be different than the R process on the client computer

– It executes the compute() method of the Pema object

 When processAllData() is called in compute()

– The Pema object is serialized and sent to each worker, where it is 

deserialized and used on that worker to accumulate partial results

– When a worker has processed all of its data, it sends its reserialized

Pema object back to the master

– The master process loops over all of the Pema objects returned by the 

workers and calls updateResults() to update the master Pema object



18

An example: computing a sample mean 
To create a Pema class generator function, use the setPemaClass

function. There are four basic pieces of information that need to be 

specified: the class name, the super classes, the fields, and the methods

PemaMean <- setPemaClass(

Class = "PemaMean", 

contains = "PemaBaseClass",

fields = list( # To be written

),

methods = list( # To be written

))



19

PemaMean fields
The list of field names and their types. The type “ANY” can be used to 

allow flexible types, but requires the author to check types

fields = list(

sum = "numeric",

totalObs = "numeric",

totalValidObs = "numeric",

mean = "numeric",

varName = "character"

),



20

PemaMean methods: initialize
The initialize method is called when the object is constructed, and can also be 

called directly. 

methods = list(

"initialize" = function(varName = "", ...) 

{

'sum, totalValidObs, and mean are all initialized to 0'

callSuper(...) # calls the method of the parent class

usingMethods(.pemaMethods) # for distributed computing

# Fields are modified in a method by using the non-local assignment op

varName <<- varName

sum <<- 0

totalObs <<- 0

totalValidObs <<- 0

mean <<- 0

},



21

PemaMean methods: processData
The processData method usually does most of the work. It takes a chunk 

of data and uses it to update the fields (state) of the object. It can also 

return a data frame of results; these will be written to an output data 

source.

"processData" = function(dataList) 

{ 

'Updates the sum and total observations from the current chunk of data.‘

if (is.null(dataList[[varName]]))

stop( "The variable ", varName, " cannot be found in the data." )

sum <<- sum + sum(as.numeric(dataList[[varName]]), na.rm = TRUE)

totalObs <<- totalObs + length(dataList[[varName]])

totalValidObs <<- totalValidObs + sum(!is.na(dataList[[varName]]))

invisible(NULL)

},



22

PemaMean methods: updateResults
The updateResults method updates the fields of one Pema object from 

the fields of another Pema object. This is called during distributed 

computations to update a master object from the results of each of the 

worker objects. Can also be used to update yesterday’s results from 

results obtained from today’s data.

"updateResults" = function(pemaMeanObj)

{

'Updates the sum and total observations from another PemaMean object.'

sum <<- sum + pemaMeanObj$sum

totalObs <<- totalObs + pemaMeanObj$totalObs

totalValidObs <<- totalValidObs + pemaMeanObj$totalValidObs

invisible(NULL)

},



23

PemaMean methods: processResults

The processResults method converts intermediate results in a Pema

object into final results.

"processResults" = function()

{

'Returns the sum divided by the totalValidObs.'

if (totalValidObs > 0)

{

mean <<- sum/totalValidObs

}

else

{

mean <<- as.numeric(NA)

}

return( mean )

},



24

Thank you!

John Chambers for R Reference Classes

R-Core Team

R Package Developers

R Community

Revolution R Enterprise Customers and Testers

Colleagues at Revolution Analytics

Contact:

lee@revolutionanalytics.com

sue@revolutionanalytics.com


