
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Rserve
A fast way to provide R functionality to applications

Simon Urbanek

Department of Computer Oriented Statistics and Data Analysis
University of Augsburg

Abstract

Rserve is a TCP/IP server which allows other programs to use facilities of
R from various languages without the need to initialize R or link to R library.
Every connection has a separate workspace and working directory. Client-
side implementations are available for popular languages such as C/C++ and
Java. Rserve supports remote connection, authentication and file transfer.
This paper describes the Rserve concept, compares it with other techniques
and illustrates its use on several practical examples.

1 Introduction

The R statistical environment provides a powerful suite of tools for statistical anal-
ysis for use in many scientific fields. Its application is not limited to statistical
research only, but its modular design allows the use of R and its packages in other
projects. Often it is feasible to hide the programming aspects of R from the user
and integrate the computing capabilities of R into a customized software designed
for a specific target group. Possible examples are web-based servlets that allow the
user to analyze his/her data using a fixed process, or software for data visualization
which uses R facilities to generate statistical models.

R provides two native interfaces for communication with other applications: a
simple standard input/output model or R as a shared library. As we will describe
later they are unsatisfactory in many situations, either because of speed concerns
or when the host application is not written in the C language. In this paper we
propose another method of using R facilities from other applications, called Rserve.
It is not limited to specific programming languages and even allows separation of
client and R environments. The main concerns while developing the system were
speed and ease of use. In section 2 we describe the design of Rserve, in section 3 we

DSC 2003 Working Papers 2

compare Rserve to other communication methods, including the Omegahat(3)(1)
approach. In section 4 we illustrate the use of Rserve on several basic examples. A
real application of Rserve is described in section 5. Concluding remarks and ideas
for the future are mentioned in section 6.

2 Design

Our experience with other communication methods has shown that there are three
main points to be considered when designing a new system: separation, flexibility
and speed. It is important to separate the R system from the application itself. One
reason is to avoid any dependence on the programming language of the application,
since a native direct interface to R is usable from the C language only(2)(5). Another
aspect comes from the fact that tight integration with R is more error prone, since
the application must take internals of R into account. On the other hand application
developers want the interface to be very flexible and make use of most R facilities.
Finally speed is a crucial element, because the goal is to provide the user with the
desired results without the need of starting an R session from scratch.

A client/server concept allows us to meet all three key requirements. The com-
putation is done by the Rserve core, which is a server answering requests from clients
such as applications. The communication between the Rserve and the client is done
via network sockets, usually over TCP/IP protocol, but other variations are also
possible. This allows the use of a central Rserve from remote computers, but also
local communication on a single machine.

One Rserve can serve multiple clients simultaneously1. Every connection to
Rserve obtains its own data space and working directory. This means, that objects
created by one connection don’t affect other connections in any way. Addition-
ally each connection can produce local files, such as images created by R’s bitmap
graphics device, without interfering with other connections. Every application can
open multiple connections to process parallel tasks.

The data transfer between the application and Rserve is performed in a binary
form to gain speed and minimize the amount of transferred data. Intermediate
objects are stored in Rserve, therefore only objects of interest need to be transferred
to the client. For practical examples, see section 4.

Beside communication with the R core, Rserve has also an integrated authenti-
cation and file transfer protocol, which makes Rserve suitable for use on separate
machines. User authentication is provided to add a level of security for remote use.
Currently Rserve support two variants: plain text authentication and unix crypt
authentication with server challenge2. File transfer allows copying of files either
needed for the computation or produced by R from the client to the server and vice
versa. Both features can be turned off if Rserve is used only locally.

The Rserve protocol used for communication between Rserve and the client is
synchronous, since R cannot handle multiple requests. The client sends a command
to be processed, Rserve sends an answer as soon as the result becomes available and

1An exception to this rule is the Windows operating system, which lacks an important feature
(fork ing of processes) that allows parallel execution of R instances. Windows version of Rserve
can serve connections only sequentially and without namespace separation. Multiple Rserves or
R-(D)COM may be better solution for applications that use parallel R processes.

2The server supplies the requested salt and the client must respond with the correctly encrypted
password.

DSC 2003 Working Papers 3

awaits next commands. Currently Rserve supports two main groups of commands
for communication with R: Creation of objects in R and evaluation of R code.

Most basic objects, such as numbers, strings or vectors can be constructed via
direct object creation. The contents of the objects are sent in binary form from the
client to the server. This provides an efficient way of transporting data necessary
for evaluation. All objects are always passed by value to separate client and server
data spaces. This way both the client and the server are free to dispose of the data
at any time, preventing crashes which are inherent in other communication methods
where the systems share the same data physically.

The second main command group is the evaluation of R code. As opposed to
object creation such code is sent in clear text to Rserve and is treated as if the
code was typed on the console in R. The resulting object of the evaluation can be
sent back in binary form to the client if requested. Most R types are supported,
including scalar numbers, strings, vectors, lists (hence classes, data frames and so
on), lexical objects etc. This allows Rserve to pass entire models back to the client.
The client may decide to not receive any objects, which is useful while setting up
intermediate objects in R which are not directly relevant to the client.

A typical use of Rserve facilities is to load all necessary data into R, perform
computations according to the user input, such as construction of models, and send
results back to the application for display. The data can be sent either directly as
binary objects or as a data file, depending on the purpose. All data and objects
are persistent until the connection is closed. This allows an application to open a
connection early, pass all necessary data to the server and respond to user input by
ad-hoc computing of the desired models or estimates. Since the results are not in
textual form, no tedious parsing of the results is necessary.

The interface to Rserve is modular and documented, allowing access to Rserve
from any application or programming language which supports sockets, including
all current scripting and programming languages. We have implemented a client
for Rserve in pure Java, which interfaces to most facilities of Rserve and maps all
objects available in Rserve into native Java objects or classes. The use of the Java
client is illustrated in the examples section.

3 Comparison with other methods

Rserve aims to complement the variety of available methods for communication to
R, not to replace them. Native API for communication with R is defined on the
level of the C or Fortran languages, excluding other languages unless some kind of
a bridge is used, specific for each language. Rserve provides an interface which is
defined independently of any programming or scripting language.

A console-based interface, where commands for R are stored in a file and written
into another file (also known as batch mode) is currently used by several applica-
tions, such as VASMM(4). It is considerably slow, because a new instance of R
has to be started for each request. Rserve has very little overhead for each new
connection, because it doesn’t need to initialize a new instance of R.

Results are usually stored in textual form, which is not suitable for interprocess
communication and requires a parser at the application’s end. This may not be
a problem for some scripting languages such as perl, but it is a problem for other
languages such as Java. Rserve still provides a way of capturing textual output if
necessary, although the preferred method is binary transfer.

DSC 2003 Working Papers 4

Since our main applications of Rserve involve the Java client for Rserve, we
also compared Rserve to the SJava interface from the Omegahat project. SJava is
conceptually far more flexible than Rserve, because it allows calling both R from
Java and Java from R. Rserve implies that Java is the controlling application and
unlike SJava it has no concept of callbacks. Every action is initiated on the Java
side and performs computation in R.

Let us compare Rserve with the R-from-Java part of SJava, because they are
based on very similar philosophies. Rserve can be used remotely, because objects
are copied when necessary. This approach allows distributed computing on multiple
machines and CPUs. SJava works only locally since it embeds R into Java via JNI.
Due to the fact that there is no synchronization between Java and R, and given
that R is not multi-thread safe, it is fatal to make more than one call from Java into
R. The application developer is responsible for proper synchronization when using
SJava. Rserve performs this synchronization by design and also allows the use of
multiple concurrent connections. SJava allows passing of object references, which
can lead to serious problems and crashes if utmost care is not taken.

Both SJava and Rserve support conversion of basic object types between Java and
R. Rserve provides much a wider variety of objects passed to Java by encapsulating
all native SEXP (simple expressions) of R into a Java class. In SJava conversion
of complex types is supported, but the developer must implement his own class
converters.

Probably one of the main disadvantages of SJava is that it does not run out-of-
the-box. The code is dependent on the hardware and operating system used, as well
as the Java implementation. It is in general hard to setup and the solution cannot
be deployed with the application. Rserve comes as a regular R source package for
unix platforms and as a binary executable for Windows. The client side of Rserve
needs no special setting and is platform independent, since it is written in pure
Java. The Rserve client classes can be easily deployed with any Java program and
no third party software is necessary.

Finally R has its own set of functions for socket communication, therefore it
should be possible to build a pure R program mimicking the same functionality as
Rserve. Although this is true, such an R program would only be able to serve one
connection at a time and would lack separate workspaces. The use of the serializable
format of R instead of the Rserve protocol was also suggested, but the serialization
is known only to R and therefore the application would have to implement the full
serialization protocol. Only limited documentation was at our disposal when the
decision was made, therefore we decided to use our own binary protocol.

4 Using Rserve

Rserve itself is provided as a regular R package and can be installed as such. The
actual use is not performed by the library command, but by starting the Rserve
executable (Windows) or typing R CMD Rserve on the command line (all others).
By default Rserve runs in local mode with no enforced authentication. Once the
Rserve is running any applications can use its services.

All of our applications using Rserve represent Java programs which use R for
computation, therefore we will show examples using the Java client for Rserve. The
principles are identical when using other Rserve clients, therefore using Java as the
starting point poses no limitation.

DSC 2003 Working Papers 5

Before plunging into real examples, let us consider the minimal “hello world”
example:

Rconnection c = new Rconnection{};
REXP x = c.eval("R.version.string");
System.out.println(r.asString());

The code has the same effect as typing R.version.string in R. In the first line
a connection to the local Rserve is established. Then the R command is evaluated
and the result stored in a special object of the class REXP. This class encapsulates
any objects received or sent to Rserve. If the type of the returned objects is known
in advance, accessor methods can be called to obtain the Java object corresponding
to the R value, in our case a regular String. Finally this string is printed on the
standard output.

The following code fragment illustrates the use of slightly more complex native
Java types:

double[] d = (double[]) c.eval("rnorm(100)").getContent();

The single line in Java provides an array of 100 doubles representing random num-
bers from the standard normal distribution. The numeric vector in R is automati-
cally converted into double[] Java type. In cases where no native Java type exists,
Rserve Java client defines its own classes such as RList or RBool3. This approach
makes the use of Rserve very easy.

As a first more practical example we want to calculate a Lowess smoother
through a given set of points. The Java application lets the user specify the data
allowing interactive changes of the points, displays a regular scatter plot and needs
coordinates of the smoother to be obtained from R.

One way of obtaining such a result would be to construct a long string command
of the form lowes(c(0.2,0.4,...), c(2.5,4.8,...)) and using the eval method to obtain
the result. This is somewhat clumsy, because the points usually already exist in a
double array in the Java application and the command string must be constructed
from these. An alternative involves constructing objects in R directly. The following
code shows the full Lowess example:

double[] dataX,dataY;
...
Rconnection c = new Rconnection();
c.assign("x",dataX);
c.assign("y",dataY);
RList l = c.eval("lowess(x,y)").asList();
double[] lx = (double[]) l.at("x").getContent();
double[] ly = (double[]) l.at("y").getContent();

First the Java application defines the arrays for the data points dataX and dataY .
The application is responsible for filling these arrays with the desired content. Then
we assign the contents of these arrays to R variables x and y. The assign command
transfers the contents in binary form to Rserve and assigns this content to the
specified symbol. This is far more efficient than constructing a string representation
of the content.

3Java’s boolean type has no support for NA missing values, therefore it cannot be used to
directly represent logical type in R.

DSC 2003 Working Papers 6

Once the variables are set in R we are ready to use the lowess function. It
returns a list consisting of two vectors x and y which contain the smoother points.
The RList object provides the method at for extraction of named entries of a list.
Since lists may contain entries of different types, the object returned by the at
method is of the class REXP whose content can be cast into double[] in our case.
The result can now be used by the Java application.

More complex computations can be performed even without transmission of
resulting objects. This is useful when defining functions or constructing complex
models. Model objects are usually large, because they contain original data points,
residuals and other meta data. Although they can be transferred to the client, it
is more efficient to retain such objects in R and extract relevant information only.
This can be done by using the voidEval method which does not transfer the result
of the evaluation back to the client:

c.assign(y, ...) ...
c.voidEval("m<-lm(y~a+b+c)");
double [] coeff =
(double[]) c.eval("coefficients(m)").getContent();

In the above example a linear model is fitted, but its content is not passed back to
the client. It is stored in an object in R for later use. Finally the coefficients are
extracted from the model and passed back to the Java application.

So far we used Rserve in local mode only. Extension to remote Rserve con-
nections is possible without code changes, except for additional parameters to the
Rconnection constructor, specifying the remote computer running the Rserve. For
details about the use of remote authentication, error handling and file transfer,
consult the documentation supplied with the Rserve and the Java client. The use
is again straight-forward, since native Java facilities, such as input/output streams
are used.

5 Example

In the following we want to describe a real-life application of Rserve. The exam-
ple features Klimt(6), a software for visualization and analysis of trees and forests.
Klimt is written entirely in Java and provides numerous interactive facilities for
visualization of tree models and analysis of associated data. Klimt can be used
as a stand-alone application, but it requires R for the construction of tree mod-
els. Therefore it needs a way of communicating with R to perform the necessary
computations.

There are four tasks for which Klimt connects to a Rserve: initialization, con-
struction of a tree from the open data set, construction of tree branches when the
user interactively modifies a tree and finally construction of derived variables.

When initializing R by opening the Rserve connection, Klimt checks the version
of R and loads the necessay libraries for tree construction - tree or rpart depend-
ing on the user’s choice. Before the first tree is generated or the first variable is
used, Klimt stores the entire data set in R by assigning each variable of the data
set into R objects of the same name. For tree construction Klimt simply evaluates
an R expression of the form: "tree("+formula+","+parameters+")$frame". The
resulting object contains a data frame which entirely describes the tree. This infor-
mation is converted by Klimt into an internal representation of a tree. The formula

DSC 2003 Working Papers 7

is generated from the items selected by the user from a list. Optional parameters
can be specified by the user.

It is recommended to wrap the evaluated expression in the try function. The
resulting object is then either the requested tree, or a string containing the error
message if the command was not successful. In Klimt the actual code looks like
this:

REXP r=c.eval("try(tree("+formula+","+parameters+")$frame)");
if (r.getType()==REXP.XT_STRING) {
String error=r.asString();
...

} else {
SNode root=convertTree(r.asList());
...

}

Here SNode is the internal recursive representation of a tree in Klimt. A similar
approach is used for interactive tree splitting. The user interactively specifies the
split, resulting in two nodes. Two subsets corresponding to the interactively created
nodes are used, one tree is grown for each node and attached to its parent node.
The main advantage is that the connection is held open and therefore the data set
doesn’t need to be re-transmitted to Rserve.

Finally derived variables can be created by evaluating an expression supplied by
the user and stored in the requested variable:
REXP r=c.eval("try("+varName+" <- "+expr+")");
If the expression supplied by the user is correct, then the result must be an array
of the same length as the data set in Klimt. Since the variables are stored directly
in R, expressions of the form v1/v2+v3 deliver the expected result if the data set
contains the variables v1, v2 and v3.

6 Conclusions

Rserve complements the family of interfaces between applications and R by providing
a fast, language-independent and remote-capable way of using all facilities of R from
other programs. Due to a clean separation between R (server) and the application
(client), internal data manipulation on one side cannot affect the other. Using
network sockets for the communication ensures platform and software independence
of the client and the server. At the same time restriction to local use is also possible,
requiring no physical network.

For concurrent connections Rserve offers both data and file space separation
between connections. Each new connection is accepted almost immediately without
the need for initializing the R engine. Integrated file transfer protocol allows the use
of remotely created files, such as plot bitmaps created by R. User authentication is
provided for some a level of security, especially when used in remote mode. This
concept is suitable for distributed computing and load balancing.

The supplied Java client provides an easy embedding of R facilities into Java
programs. Evaluation and transfer of most types from R to the application is pro-
vided, including complex objects such as models. All basic types are automatically
converted to corresponding Java classes.

DSC 2003 Working Papers 8

Rserve is very versatile, since it poses no limit on the facilities of R used. Al-
though Rserve allows the execution of all R commands, the user should avoid any
commands involving the GUI or console input, since Rserve has no console and
there is no guarantee that it has any GUI at all. An exception are applications
that provide their own copy of Rserve and have control over the way Rserve is
started. Typical uses of Rserve include interactive applications using R for model
construction (see KLIMT project) or web-servlets performing online computations.

As of now only basic types, such as numbers, strings and vectors hereof, can
be assigned directly to R objects. The framework allows the transfer of arbitrarily
complex types supported by the REXP, but the Rserve side is not fully implemented
yet. Only transfer of evaluated objects supports all common expression types.

Rserve currently provides two client implementations: for Java and C languages.
The Rserve protocol is well defined and allows the implementation of further clients
in other programming or scripting languages when needed.

Rserve was tested on Linux, Mac OS X and Windows operating systems. The
Windows version is the only restricted one, because there is no possible way of
spawning new instances of R quickly. If all a Windows application needs is non-
concurrent Rserve connections, it can provide its own copy of the Rserve binary,
which will automatically find the last installed R and use it for computations, pre-
venting clashes with other applications.

The Rserve project is released under GPL software license, which means that it
can be modified or enhanced if necessary. The current Rserve is already used by
several projects and is being enhanced for their needs.

References

[1] The omegahat project (http://www.omegahat.org).

[2] John M. Chambers. Programming with Data. A Guide to the S Language.
Springer-Verlag, NY, 1998.

[3] Duncan Temple Lang. The omegahat environment: New possibilities for statis-
tical computing. JCGS, 9(3), 2000.

[4] Tomoyuki Tarumi Masaya Iizuka, Yuichi Mori and Yutaka Tanaka. Statistical
software vasmm for variable selection in multivariate methods. In COMPSTAT
2002 Proceedings in Computational Statistics, pages 563–568. Physica, Heidel-
berg, 2002.

[5] R Development Core Team. Writing r extensions
(http://cran.at.r-project.org/doc/manuals/r-exts.pdf).

[6] Simon Urbanek and Antony R. Unwin. Making trees interactive - klimt. In Proc.
of the 33th Symposium of the Interface of Computing Science and Statistics,
2001.

	Introduction
	Design
	Comparison with other methods
	Using Rserve
	Example
	Conclusions

